Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Theoretical optimization of base doping concentration for radiation resistance of InGaP subcells of InGaP/GaAs/Ge based on minority-carrier lifetime

Elfiky, D.*; Yamaguchi, Masafumi*; Sasaki, Takuo*; Takamoto, Tatsuya*; Morioka, Chiharu*; Imaizumi, Mitsuru*; Oshima, Takeshi; Sato, Shinichiro; Elnawawy, M.*; Eldesoky, T.*; et al.

Japanese Journal of Applied Physics, 49(12), p.121201_1 - 121201_7, 2010/12

 Times Cited Count:11 Percentile:45.91(Physics, Applied)

One of the fundamental objectives for research and development of space solar cells is to improve their radiation resistance. InGaP solar cells with low base carrier concentrations under low-energy proton irradiations have shown high radiation resistances. In this study, an analytical model for low-energy proton radiation damage to InGaP subcells based on a fundamental approach for radiative and nonradiative recombinations has been proposed. The radiation resistance of InGaP subcells as a function of base carrier concentration has been analyzed by using the radiative recombination lifetime and damage coefficient K for the minority-carrier lifetime of InGaP. Numerical analysis shows that an InGaP solar cell with a lower base carrier concentration is more radiation-resistant. Satisfactory agreements between analytical and experimental results have been obtained, and these results show the validity of the analytical procedure. The damage coefficients for minority-carrier diffusion length and carrier removal rate with low-energy proton irradiations have been observed to be dependent on carrier concentration through this study. As physical mechanisms behind the difference observed between the radiation-resistant properties of various base doping concentrations, two mechanisms, namely, the effect of a depletion layer as a carrier collection layer and generation of the impurity-related complex defects due to low-energy protons stopping within the active region, have been proposed.

Journal Articles

Effect of base doping concentration on radiation-resistance for GaAs sub-cells in InGaP/GaAs/Ge

Elfiky, D.*; Yamaguchi, Masafumi*; Sasaki, Takuo*; Takamoto, Tatsuya*; Morioka, Chiharu*; Imaizumi, Mitsuru*; Oshima, Takeshi; Sato, Shinichiro; Elnawawy, M.*; Eldesoky, T.*; et al.

Japanese Journal of Applied Physics, 49(12), p.121202_1 - 121202_5, 2010/12

 Times Cited Count:6 Percentile:31.11(Physics, Applied)

GaAs solar cells with the lower base carrier concentration under low energy proton irradiations had shown experimentally the better radiation-resistance. Analytical model based on fundamental approach for radiative and non-radiative recombination has been proposed for radiation damage in GaAs sub-cells. The radiation resistance of GaAs sub-cells as a function of base carrier concentration has been analyzed by using radiative recombination lifetime and damage coefficient for minority carrier lifetime. Numerical analysis shows good agreement with experimental results. The effect of carrier concentration upon the change of damage constant and carrier removal rate have been studied.

Journal Articles

Study the effects of proton irradiation on GaAs/Ge solar cells

Elfiky, D.*; Yamaguchi, Masafumi*; Sasaki, Takuo*; Takamoto, Tatsuya*; Morioka, Chiharu*; Imaizumi, Mitsuru*; Oshima, Takeshi; Sato, Shinichiro; Elnawawy, M.*; Eldesuky, T.*; et al.

Proceedings of 35th IEEE Photovoltaic Specialists Conference (PVSC-35) (CD-ROM), p.002528 - 002532, 2010/06

 Times Cited Count:5 Percentile:87.77

Proton energy dependence of radiation damage to GaAs/Ge solar cells irradiated with protons with various energies (50 keV, 200 keV, 1 MeV and 9.5 MeV) were analyzed by using PC1D simulation together with SRIM simulations to investigate their electrical properties. The degradation of the open-circuit voltage is highest for 50 keV irradiation and lowest for 9.5 MeV irradiation. According to SRIM simulations the above changes in electrical properties are mainly related to damage in different regions of the solar sells.

3 (Records 1-3 displayed on this page)
  • 1