Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Rail DRAGON: Long-reach Bendable Modularized Rail Structure for Constant Observation inside PCV

Yokomura, Ryota*; Goto, Masataka*; Yoshida, Takehito*; Warisawa, Shinichi*; Hanari, Toshihide; Kawabata, Kuniaki; Fukui, Rui*

IEEE Robotics and Automation Letters (Internet), 9(4), p.3275 - 3282, 2024/04

 Times Cited Count:0

To reduce errors in the remote control of robots during decommissioning, we developed a Rail DRAGON, which enables continuous observation of the work environment. The Rail DRAGON is constructed by assembling and pushing a long rail structure inside the primary containment vessel (PCV), and then repeatedly deploying several monitoring robots on the rails to enable constant observation in a high-radiation environment. In particular, we have developed the following components of Rail DRAGON: bendable rail modules, straight rail modules, a basement unit, and monitoring robots. Concretely, this research proposes and demonstrates a method to realize an ultralong articulated structure with high portability and workability. In addition, it proposes and verifies the feasibility of a method for deploying observation equipment that can be easily deployed and replaced, while considering disposal.

Oral presentation

3rd model intercomparison projects of atmospheric dispersion model for $$^{137}$$Cs emitted from Fukushima Daiichi Nuclear Power Plant, and application of MIPs' results for usage in an emergency

Yamazawa, Hiromi*; Sato, Yosuke*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Fang, S.*; Qu$'e$rel, A.*; Qu$'e$lo, D.*; Kondo, Hiroaki*; Terada, Hiroaki; Kadowaki, Masanao; et al.

no journal, , 

The 3rd model intercomparison project (MIP) of atmospheric dispersion model targeting on $$^{137}$$Cs emitted from Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 were conducted. All participated 9 models used the identical source term and meteorological data as in the previous MIP (2nd MIP), but finer horizontal grid resolution (1 km) than that of 2nd MIP (3 km) was used for understanding the behavior of atmospheric $$^{137}$$Cs in the vicinity of FDNPP. Results of the models elucidated that most of the observed high atmospheric $$^{137}$$Cs concentrations were well simulated, and the good performance of some models cancelled bad performance of some models when used as an ensemble, which highlights the advantage of multimodel ensemble. The analyses also indicated that the use of the finer grid resolution improved the meteorological field in the vicinity of FNDPP and the atmospheric $$^{137}$$Cs measured near FDNPP was more reasonably reproduced in 3rd MIP than 2nd MIP. As well as the evaluation of the performance of the model, we examined usefulness of the results of atmospheric dispersion simulation in an emergency. The analyses reported that the multimodel ensemble missed only 3% of the observed plumes, even if the absolute value of the simulated $$^{137}$$Cs in each model was different in the range of factor 3-6. The analyses also indicated that from six to eight models are required for making most of advantages of the multimodel ensemble.

2 (Records 1-2 displayed on this page)
  • 1