Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 27

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Observation of dihydrogen bonds in high-pressure phases of ammonia borane by X-ray and neutron diffraction measurements

Nakano, Satoshi*; Sano, Asami; Hattori, Takanori; Machida, Shinichi*; Komatsu, Kazuki*; Fujihisa, Hiroshi*; Yamawaki, Hiroshi*; Goto, Yoshito*; Kikegawa, Takumi*

Inorganic Chemistry, 60(5), p.3065 - 3073, 2021/03

 Times Cited Count:10 Percentile:74.02(Chemistry, Inorganic & Nuclear)

X-ray and neutron diffraction analyses of ammonia borane were conducted at ambient and high pressures. The H-H distance in dihydrogen bonds was shorter than twice the van der Waals radius (2.4 ${AA}$). The half of the dihydrogen bonds were broken on phase transition from AP to the first high pressure phase (HP1) at approximately 1.2 GPa as revealed by an increase in the H-H distances. On further pressure increase, all of the H-H distances became shorter than 2.4 ${AA}$ again, implying the pressure-induced reformation of the dihydrogen bonds. Furthermore, the HP1 transformed to the second one with the structure of $$P2_1$$ (Z = 2) at about 11 GPa. In this phase transition, the inclination of the molecule axis became larger and the number of types of dihydrogen bonds increased from 6 to 11. Just before the third transition at 18.9 GPa, the shortest dihydrogen bond decreased to 1.65 ${AA}$. The present study experimentally first confirmed the breakage and reformation of the dihydrogen bonds by the structural change under pressure.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Nuclear and thermal feasibility of lithium-loaded high temperature gas-cooled reactor for tritium production for fusion reactors

Goto, Minoru; Okumura, Keisuke; Nakagawa, Shigeaki; Inaba, Yoshitomo; Matsuura, Hideaki*; Nakaya, Hiroyuki*; Katayama, Kazunari*

Fusion Engineering and Design, 136(Part A), p.357 - 361, 2018/11

 Times Cited Count:6 Percentile:52.79(Nuclear Science & Technology)

A High Temperature Gas-cooled Reactor (HTGR) is proposed as a tritium production device, which has the potential to produce a large amount of tritium using $$^{6}$$Li(n,$$alpha$$)T reaction. In the HTGR design, generally, boron is loaded into the core as a burnable poison to suppress excess reactivity. In this study, lithium is loaded into the HTGR core instead of boron and is used as a burnable poison aiming to produce thermal energy and tritium simultaneously. The nuclear characteristics and the fuel temperature were calculated to confirm the feasibility of the lithium-loaded HTGR. It was shown that the calculation results satisfied the design requirements and hence the feasibility was confirmed for the lithium-loaded HTGR, which produce thermal energy and tritium.

Journal Articles

Conceptual study of an experimental HTGR upgraded from HTTR

Goto, Minoru; Fukaya, Yuji; Mizuta, Naoki; Inaba, Yoshitomo; Ohashi, Hirofumi; Yan, X.

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10

The HTTR (High Temperature engineering Test Reactor) constructed at JAEA-Oarai R&D center is a block-type experimental HTGR (High Temperature Gas-cooled Reactor) with 30 MW thermal power. It attained the first criticality at 1998 and has yielded very useful data for future HTGR design. Although the HTTR was designed very conservatively because the HTTR is the first HTGR for Japan, future HTGRs can be designed with a reasonable conservativeness based on the HTTR data. Additionally, it is possible to enhance the performance of the reactor core by improving the design and introducing new technologies. This paper describes a concept of an experimental HTGR that is upgraded from the HTTR by the reasonable conservativeness, the design improvement and the new technology introduction.

Journal Articles

Study on Pu-burner high temperature gas-cooled reactor in Japan; Design study of fuel and reactor core

Goto, Minoru; Aihara, Jun; Inaba, Yoshitomo; Ueta, Shohei; Fukaya, Yuji; Okamoto, Koji*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10

JAEA has conducted design studies of a Pu-burner HTGR. The Pu-burner HTGR incinerates Pu by fission, and hence a high burn-up is required for the efficient incineration. In the fuel design, a thin ZrC layer, which acts as an oxygen getter and suppresses the internal pressure, was coated on the fuel kernel to prevent the CFP failure at the high burn-up. A stress analysis of the SiC layer, which acts as a pressure vessel for the CFP, was performed for with consideration of the depression effect due to the ZrC layer. As a result, the CFP failure fraction at high burn-up of 500 GWd/t satisfied the target value. In the reactor core design, an axial fuel shuffling was employed to attain the high burn-up, and the nuclear burn-up calculations with the whole core model and the fuel temperature calculations were performed. As a result, the nuclear characteristics, which are the shutdown margin and the temperature coefficient of reactivity, and the fuel temperature satisfied their target values.

JAEA Reports

Excellent feature of Japanese HTGR technologies

Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju; Ohashi, Hirofumi; Kubo, Shinji; Inaba, Yoshitomo; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; et al.

JAEA-Technology 2018-004, 182 Pages, 2018/07

JAEA-Technology-2018-004.pdf:18.14MB

Research and development on High Temperature Gas-cooled Reactor (HTGR) in Japan started since late 1960s. Japan Atomic Energy Agency (JAEA) in cooperation with Japanese industries has researched and developed system design, fuel, graphite, metallic material, reactor engineering, high temperature components, high temperature irradiation and post irradiation test of fuel and graphite, high temperature heat application and so on. Construction of the first Japanese HTGR, High Temperature engineering Test Reactor (HTTR), started in 1990. HTTR achieved first criticality in 1998. After that, various test operations have been carried out to establish the Japanese HTGR technologies and to verify the inherent safety features of HTGR. This report presents several system design of HTGR, the world-highest-level Japanese HTGR technologies, JAEA's knowledge obtained from construction, operation and management of HTTR and heat application technologies for HTGR.

JAEA Reports

Comparison between HTFP code and minory changed FORNAX-A code

Aihara, Jun; Ueta, Shohei; Goto, Minoru; Inaba, Yoshitomo; Shibata, Taiju; Ohashi, Hirofumi

JAEA-Technology 2018-002, 70 Pages, 2018/06

JAEA-Technology-2018-002.pdf:1.46MB

HTFP code is code for calculation of additional release amount of fission product (FP) from fuel rod in high temperature gas-cooled reactor (HTGR) after stop of fission. Minory changed Fornax-A code also can calculate that. Therefore, release behavior of Cs calculated with HTFP code was compared with that calculated with minory modified FORNAX-A code in this report. Release constants of Cs evaluated with minory modified FORNAX-A code are rather different from default values for HTFP code.

Journal Articles

Development of security and safety fuel for Pu-burner HTGR, 2; Design study of fuel and reactor core

Goto, Minoru; Ueta, Shohei; Aihara, Jun; Inaba, Yoshitomo; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 6 Pages, 2017/07

A PuO$$_{2}$$-YSZ fuel kernel with a ZrC coating, which enhances safety, security and safeguard, namely: 3S-TRISO fuel, was proposed to introduce to the plutonium-burner HTGR. In this study, the efficiency of the ZrC coating as the free-oxygen getter was examined based on a thermochemical calculation. A preliminary study on the feasibility of the 3S-TRISO fuel was conducted focusing on the internal pressure. Additionally, a nuclear feasibility of the reactor core was studied. As a result, all the amount of the free-oxygen is captured by a thin ZrC coating under 1600$$^{circ}$$C and coating ZrC on the fuel kernel should be very effective method to suppress the internal pressure. The internal pressure of the 3S-TRISO fuel at 500 GWd/t is lower than that of UO$$_{2}$$ kernel TRISO fuel whose feasibility had been already confirmed and the 3S-TRISO fuel should be feasible. The fuel shuffling allows to achieve 500 GWd/t. The temperature coefficient of reactivity is negative during the operation period and thus the nuclear feasibility of the reactor core should be achievable.

Journal Articles

Nuclear thermal design of high temperature gas-cooled reactor with SiC/C mixed matrix fuel compacts

Aihara, Jun; Goto, Minoru; Inaba, Yoshitomo; Ueta, Shohei; Sumita, Junya; Tachibana, Yukio

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.814 - 822, 2016/11

Japan Atomic Energy Agency (JAEA) has started R&D for apply SiC/C mixed matrix to fuel element of high temperature gas-cooled reactors (HTGRs) to improve oxidation resistance of fuel. Nuclear thermal design of HTGR with SiC/C mixed matrix fuel compacts was carried out as a part of above R&Ds. Nuclear thermal design was carried out based on a small sized HTGR for developing countries, HTR50S. Maximum enrichment of uranium is set to be 10 wt%, because coated fuel particles with 10 wt% uranium have been fabricated in Japan. Numbers of kinds of enrichment and burnable poisons (BPs) were set to be same as those of original HTR50S (3 and 2, respectively). We succeeded in nuclear thermal design of a small sized HTGR which performance was equivalent to original HTR50S, with SiC/C mixed matrix fuel compacts. Based on nuclear thermal design, intactness of coated fuel particles was evaluated to be kept on internal pressure during normal operation.

Journal Articles

Conceptual study of a plutonium burner high temperature gas-cooled reactor with high nuclear proliferation resistance

Goto, Minoru; Demachi, Kazuyuki*; Ueta, Shohei; Nakano, Masaaki*; Honda, Masaki*; Tachibana, Yukio; Inaba, Yoshitomo; Aihara, Jun; Fukaya, Yuji; Tsuji, Nobumasa*; et al.

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.507 - 513, 2015/09

A concept of a plutonium burner HTGR named as Clean Burn, which has a high nuclear proliferation resistance, had been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to enhance the safety, we propose to introduce PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating to the Clean Burn. In this study, we conduct fabrication tests aiming to establish the basic technologies for fabrication of PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating. Additionally, we conduct a quantitative evaluation of the security for the safety, a design of the fuel and the reactor core, and a safety evaluation for the Clean Burn to confirm the feasibility. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017, and the first year of the implementation was on schedule.

JAEA Reports

Preliminary evaluation of integrity of coated fuel particles under normal operation in core of small-sized HTGR system HTR50S at 1st. step of Phase I

Aihara, Jun; Goto, Minoru; Inaba, Yoshitomo; Isaka, Kazuyoshi; Ohashi, Hirofumi; Tachibana, Yukio

JAEA-Technology 2014-009, 29 Pages, 2014/05

JAEA-Technology-2014-009.pdf:3.51MB

Japan Atomic Energy Agency (JAEA) is carrying out conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR), HTR50S. In this report, integrity of coated fuel particles (CFPs) is evaluated for core of HTR50S of 1st. step of phase I (first core of HTR50S) under normal operation. CFPs are considered to be failed by fuel kernel migration by temperature gradient in CFPs or corrosion of SiC layer by fission product Pd (Pd corrosion) or increase in internal pressure under normal operation. In this report, integrity of CFPs is to be maintained for each phenomenon.

Journal Articles

A Small-sized HTGR system design for multiple heat applications for developing countries

Ohashi, Hirofumi; Sato, Hiroyuki; Goto, Minoru; Yan, X.; Sumita, Junya; Tazawa, Yujiro*; Nomoto, Yasunobu; Aihara, Jun; Inaba, Yoshitomo; Fukaya, Yuji; et al.

International Journal of Nuclear Energy, 2013, p.918567_1 - 918567_18, 2013/00

Japan Atomic Energy Agency (JAEA) has conducted a conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR) for multiple heat applications, named HTR50S, with the reactor outlet coolant temperature of 750 $$^{circ}$$C and 900 $$^{circ}$$C. It is first-of-a-kind of the commercial plant or a demonstration plant of a small-sized HTGR system to deploy it in developing countries in the 2020s. The design concept of HTR50S is to satisfy the user requirements for multipurpose heat application, to upgrade its performance compared to that of HTTR without significant R&D utilizing the knowledge obtained by the HTTR design and operation, and to fulfill the high level of safety by utilizing the inherent features of HTGR and a passive decay heat removal system.

Journal Articles

Nuclear design study on a small-sized high temperature gas-cooled reactor with high burn-up fuel and axial fuel shuffling

Goto, Minoru; Seki, Yasuyoshi; Fukaya, Yuji; Inaba, Yoshitomo; Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio

Proceedings of 6th International Topical Meeting on High Temperature Reactor Technology (HTR 2012) (USB Flash Drive), 10 Pages, 2012/10

Japan Atomic Energy Agency (JAEA) has started a conceptual design study of a small-sized High Temperature Gas-cooled Reactor (HTGR) with 50 MW thermal power (HTR50S) to be deployed in developing countries in the 2020s. The nuclear design of the HTR50S is performed by upgrading that of a High Temperature Engineering Test Reactor (HTTR), which is the Japanese HTGR with 30 MW thermal power. In the HTTR design, 12 kinds of fuel enrichment was used to optimize the power distribution. In the previous study of the HTR50S, we succeeded in reducing the number of the fuel enrichment to 3. The present study challenges the nuclear design for effective use of uranium by utilizing high burn-up fuel and axial fuel shuffling, in which a half of the loaded fuel elements is discharged from the core every 2 years and the remains are reloaded. The core burn-up calculations were performed and the nuclear characteristics were confirmed to satisfy the design requirement.

JAEA Reports

Conceptual design of small-sized HTGR system, 3; Core thermal and hydraulic design

Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

JAEA-Technology 2012-019, 142 Pages, 2012/06

JAEA-Technology-2012-019.pdf:4.54MB

JAEA has started the conceptual designs of small-sized HTGR systems, aiming for the deployment in developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of a power generation and steam supply small-sized HTGR with a thermal power of 50 MW (HTR50S) was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged.

JAEA Reports

Conceptual design of small-sized HTGR system, 2; Nuclear design

Goto, Minoru; Seki, Yasuyoshi; Inaba, Yoshitomo; Ohashi, Hirofumi; Sato, Hiroyuki; Fukaya, Yuji; Tachibana, Yukio

JAEA-Technology 2012-017, 29 Pages, 2012/06

JAEA-Technology-2012-017.pdf:1.87MB

Japan Atomic Energy Agency has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries in the 2020s. The nuclear of the HTR50S was performed by upgrading the proven technology of High Temperature Engineering Test Reactor (HTTR) to reduce cost for the construction. In the nuclear design, reduce the number of fuel enrichment comparing with the HTTR is one of the important subject to be upgraded. The optimization of the power distribution in the core, which is required to suppress the maximum fuel temperature below the limitation, was completed successfully by using only three fuel enrichment and the number of fuel enrichment was reduced significantly compared with the HTTR.

Journal Articles

Nuclear design of small-sized high temperature gas-cooled reactor for developing countries

Goto, Minoru; Seki, Yasuyoshi; Inaba, Yoshitomo; Ohashi, Hirofumi; Sato, Hiroyuki; Fukaya, Yuji; Tachibana, Yukio

Proceedings of 2012 International Congress on Advances in Nuclear Power Plants (ICAPP '12) (CD-ROM), p.341 - 348, 2012/06

Japan Atomic Energy Agency has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries in the 2020s. The nuclear of the HTR50S was performed by upgrading the proven technology of High Temperature Engineering Test Reactor (HTTR) to reduce cost for the construction. In the nuclear design, reduce the number of fuel enrichment comparing with the HTTR is one of the important subject to be upgraded. The optimization of the power distribution in the core, which is required to suppress the maximum fuel temperature below the limitation, was completed successfully by using only three fuel enrichment and the number of fuel enrichment was reduced significantly compared with the HTTR.

Journal Articles

Identified charged hadron production in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.

Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06

 Times Cited Count:184 Percentile:99.44(Physics, Nuclear)

Transverse momentum distributions and yields for $$pi^{pm}, K^{pm}, p$$, and $$bar{p}$$ in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different $$sqrt{s}$$ collisions. We also present the scaling properties such as $$m_T$$ and $$x_T$$ scaling and discuss the mechanism of the particle production in $$p + p$$ collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.

Journal Articles

Azimuthal correlations of electrons from heavy-flavor decay with hadrons in $$p+p$$ and Au+Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.

Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04

 Times Cited Count:8 Percentile:49.7(Physics, Nuclear)

Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled $$p+p$$ collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to $$p+p$$ collisions.

JAEA Reports

Investigation of the loss of forced cooling test by using the High Temperature Engineering Test Reactor (HTTR) (Contract research)

Nakagawa, Shigeaki; Takamatsu, Kuniyoshi; Tochio, Daisuke; Inaba, Yoshitomo; Goto, Minoru

JAEA-Technology 2007-056, 51 Pages, 2007/09

JAEA-Technology-2007-056.pdf:5.49MB

The three gas circulators trip test and the vessel cooling system stop test as the safety demonstration test by using the HTTR are under planning to demonstrate inherent safety features of High Temperature Gas-cooled Reactor. All three gas circulators to circulate the helium gas as the coolant are stopped to simulate the loss of forced cooling in the three gas circulators trip test. The stop of the vessel cooling system located outside the reactor pressure vessel to remove the core residual heat follows the stop of all three gas circulators in the vessel cooling system stop test. The analysis of the reactor transient for such tests and abnormal events postulated during the test was performed. From the result of analysis, it was confirmed that the three gas circulators trip test and the vessel cooling system stop test can be performed within the region of the normal operation in the HTTR and the safety of the reactor facility is ensured even if the abnormal events would occur.

Oral presentation

Nuclear design of small-sized HTGR system (HTR50S)

Goto, Minoru; Seki, Yasuyoshi; Inaba, Yoshitomo; Ohashi, Hirofumi; Sato, Hiroyuki; Fukaya, Yuji; Tachibana, Yukio

no journal, , 

Japan Atomic Energy Agency has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries in the 2030s. The design policy of the HTR50S is to construct it without development of new technologies, which require additional demonstration tests, to suppress the construction cost and deploy it in 2030s. Accordingly, the nuclear design of the HTR50S was performed by upgrading the proven design technology of the High Temperature Engineering Test Reactor (HTTR). In the nuclear design of the HTR50S, we challenged to increase the power density and decrease the number of the fuel enrichments compared with the HTTR. As a result, the nuclear design was completed successfully by increasing the power density by 1.4 times of the power density of the HTTR and reducing the number of the fuel enrichment to only three from twelve of the HTTR.

27 (Records 1-20 displayed on this page)