Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 106

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Fuel unloading work in decommissioning of the prototype fast breeder reactor Monju; First stage of Monju decommissioning project

Shiota, Yuki; Kudo, Junki; Tsuno, Hiromi; Takeuchi, Ryotaro; Ariyoshi, Hideo; Shiohama, Yasutaka; Hamano, Tomoharu; Takagi, Tsuyohiko; Nagaoki, Yoshihiro

JAEA-Technology 2023-002, 87 Pages, 2023/06

JAEA-Technology-2023-002.pdf:8.53MB

In the first stage of Monju decommissioning project, fuel unload work began to be carried out. There are two tasks in this work. One is Fuel Treatment and Storage work that gets rid of sodium on the fuel assemblies unloaded from Ex-Vessel fuel Storage Tank (EVST) and carries it in the storage pool, and the other is Fuel Unloading that the fuel assemblies in the reactor core is replaced with dummy fuels and stored in EVST. Fuel Treatment and Storage work and Fuel Unloading work are performed alternately, and 370 fuel assemblies in the core and 160 fuel assemblies in EVST are all carried to the storage pool. Monju had a large amount of sodium in the reactor vessel and EVST, and there was a residual risk of fuel failure due to the superposition of a large scale sodium fire. Therefore, in the first stage of the Monju decommissioning project, it was decided to take about 5.5 years to remove the residual risk by storing all the fuel rods in the fuel storage pool. There are few Fuel handling system of Sodium Fast Reactor in the world, so the driving record and experience are not enough. So, events that occur even if taken measure are assumed. The following three events apply to this; first, events that are difficult to prevent, events. Second, that are due to lack of experience, and final, events optimization of system is not enough. Plans were taken to suppress these events. This report summarizes the "Monju decommissioning project" work conducted so far in all four campaigns.

JAEA Reports

Fuel unloading operations -2020- in the decommissioning of the prototype fast breeder reactor "Monju"

Shiota, Yuki; Ariyoshi, Hideo; Shiohama, Yasutaka; Isobe, Yuta; Takeuchi, Ryotaro; Kudo, Junki; Hanaki, Shotaro; Hamano, Tomoharu; Takagi, Tsuyohiko

JAEA-Technology 2022-019, 95 Pages, 2022/09

JAEA-Technology-2022-019.pdf:7.59MB

In the first stage of "Monju" decommissioning project, "Fuel Unloading Operations" have been carrying out. The operations consists of two processes. The first process is "Fuel Treatment and Storage" is that the fuel assemblies unloaded from the Ex-Vessel fuel Storage Tank (EVST) are canned after sodium cleaning, and then transferred to the storage pool. The second process is "Fuel Unloading" that the fuel assemblies in the reactor core are replaced with dummy fuel assemblies and stored in the EVST. "Fuel Treatment and Storage" and "Fuel Unloading" are performed alternately until 370 fuel assemblies in the core and 160 fuel assemblies in the EVST are all transferred to the storage pool. This is a summary of "Fuel Unloading" in the third quarter of "Fuel Unloading Operation". In fiscal 2020, as "Fuel Unloading", 72 fuel assemblies and 74 blanket fuel assemblies were unloaded from the core, and stored in the EVST. From the EVST, 145 dummy fuel assemblies and 1 fixed absorber were loaded in the core instead. During these operations, a total of 36 cases alarming or equipment malfunctions classified into 4 types occurred. However, these events were estimated in advance, there were no significant events that menaces to safety of fuel assemblies and equipment. Therefore, there were no serious problem like fall of fuel assemblies and events that may affect schedule of the project like stick of gripper of ex-vessel fuel transfer machine. When equipment's work or performance fail, the operation continued with safety by elimination of causes of problem. Fuel handling system of Monju has function that is endemic to sodium cooling fast breeding reactor. Because continuous operations of fuel handling system with actual fuel assemblies start recently, we don't have as much experience as PWR and BWR. With estimation of various troubles, reduction of frequency of trouble occurrence and minimization of impacts on schedule performed.

JAEA Reports

Fuel Unloading Operations -2019- in the decommissioning of prototype fast breeder reactor "Monju"

Yabe, Takanori; Murakami, Makio; Shiota, Yuki; Isobe, Yuta; Shiohama, Yasutaka; Hamano, Tomoharu; Takagi, Tsuyohiko; Nagaoki, Yoshihiro

JAEA-Technology 2022-002, 66 Pages, 2022/07

JAEA-Technology-2022-002.pdf:10.45MB

In the first stage of "Monju" decommissioning project, "Fuel Unloading Operations" have been carrying out. The operations consists of two processes. The first process is "Fuel Treatment and Storage" is that the fuel assemblies unloaded from the Ex-Vessel fuel Storage Tank are canned after sodium cleaning, and then transferred to the storage pool. The second process is "Fuel Unloading" that the fuel assemblies in the reactor core are replaced with dummy fuel assemblies and stored in the Ex-Vessel fuel Storage Tank. "Fuel Treatment and Storage" and "Fuel Unloading" are performed alternately until 370 fuel assemblies in the core and 160 fuel assemblies in the Ex-Vessel fuel Storage Tank are all transferred to the storage pool. In fiscal 2018, as "Fuel Treatment and Storage", 86 fuel assemblies were transferred to the storage pool. As "Fuel Unloading", 76 dummy fuel assemblies were stored in the Ex-Vessel fuel Storage Tank. In fiscal 2019, as "Fuel Unloading", 60 fuel assemblies and 40 blanket fuel assemblies were unloaded from the core. These assemblies were stored in the Ex-Vessel fuel Storage Tank, and dummy fuel assemblies were loaded into the core instead. During these operations, a total of 38 cases of alarming or equipment malfunctions classified into 24 types occurred. However, no significant events that menaces to safety have occurred. The operations were continued safely by removing the direct factors for the malfunctions in the equipment operation and performance.

Journal Articles

Evaluation on laser quenching heat transfer mechanism using numerical method and improvement of quenching depth

Kitagawa, Yoshihiro; Shirahama, Takuma*; Kisohara, Naoyuki; Tsuboi, Akihiko

Dai-96-Kai Reza Kako Gakkai Koen Rombunshu (Internet), p.91 - 96, 2022/01

Laser scanning quenching is a locally and rapidly heat-treated process and has an advantage of no coolant required. Compared with conventional technique such as induction quenching, the region of laser quenching is about 0.5$$sim$$0.7mm in depth and it needs to be expanded for more applications or durability. For this purpose, the temperature distributions and transitions in materials during laser irradiation have been revealed by using a 3D heat transfer computer code, micro-structural observation and hardness transitions in depth direction. The results indicate the laser irradiation with low power and low scan speed condition allows deeper quenching area, but it also suggests the hardness of the deepest quenching area is degraded due to slow temperature decreasing rate after laser heat scanning. Multiple times continuous irradiation have been proposed and studied to resolve this hardness degradation, and maximum quenching depth of 1.4mm is obtained under three times irradiation and controlling its power and scan speed properly.

Journal Articles

A Proposal of optimum calculation settings of continuous wavelet transform in magnetotelluric data processing

Ogawa, Hiroki; Hama, Yuki*; Asamori, Koichi; Ueda, Takumi*

Butsuri Tansa, 75, p.38 - 55, 2022/00

In the magnetotelluric (MT) method, so as to identify the subsurface resistivity structure, the apparent resistivity and phase profiles are calculated by transforming time-series data into spectral data. The continuous wavelet transform (CWT) is well known as a new method of time-frequency analysis instead of the short-time Fourier transform. The CWT is superior in processing non-stationary wideband signals like the MT signal by adjusting the size of the wavelet according to the value of frequency. However, the calculation settings of the CWT, such as the type of basis function and the wavelet parameter, are often determined empirically because of the arbitrariness of the shape of the wavelet. Although there might be differences between the calculated MT responses and the true responses due to improper settings of the CWT, there are no detailed studies considering the effect of numerical errors derived from spectral transforms on MT data. In this study, focusing on the frequency band between 0.001 Hz and 1 Hz, we examined the optimum calculation settings of the CWT in processing MT data in terms of suppressing the numerical errors caused by the spectral transform of time-series data. We also show the validity of the proposed calculation settings by applying the CWT to MT survey data of different types. Superiority of the CWT with proposed settings is suggested especially when the signal-to-noise ratio of observed data is low. Consequently, the proposed calculation settings were confirmed to strike a balance between the resolutions of the time and frequency domains well and will therefore be effective in obtaining reliable MT responses.

Journal Articles

A Fault dating method using an electron spin resonance

Tanaka, Kiriha*; Muto, Jun*; Nagahama, Hiroyuki*; Oka, Toshitaka

Hoshasen Kagaku (Internet), (110), p.21 - 30, 2020/10

In a fault dating by electron spin resonance (ESR), the number of unpaired electrons trapped in defects in minerals contained in a fault material is detected as ESR intensity. Based on the quantitative change of the intensity before and after an earthquake, the last age of a fault movement can be estimated. However, this method has a hypothesis called "zero-setting" which assumes the decrease in the ESR intensity to zero by fault movement during an earthquake. In order to understand and demonstrate zero-setting, the analysis of the natural fault materials and experiments mimicking fault movements have been conducted. In this paper, we summarized the previous studies about zero-setting by fault movement and described the current status and challenges.

JAEA Reports

Mizunami Underground Research Laboratory Project; Synthesis report on the R&D concerning important issues

Matsuoka, Toshiyuki; Hama, Katsuhiro

JAEA-Research 2019-012, 157 Pages, 2020/03

JAEA-Research-2019-012.pdf:11.91MB

The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host crystalline rock at Mizunami City in Gifu Prefecture, central Japan. The project proceeds in three overlapping phases, "Phase I: Surface-based investigation Phase", "Phase II: Construction Phase" and "Phase III: Operation Phase". The MIU Project has been ongoing the Phase III, as the Phase II was concluded for a moment with the completion of the excavation of horizontal tunnels at GL-500m level in February 2014. The present report summarizes the research and development activities carried out mainly in the GL-500m stage during Third Medium to Long-term Research Phase.

Journal Articles

Intrinsic 2D ferromagnetism in V$$_{5}$$Se$$_{8}$$ epitaxial thin films

Nakano, Masaki*; Wang, Y.*; Yoshida, Satoshi*; Matsuoka, Hideki*; Majima, Yuki*; Ikeda, Keisuke*; Hirata, Yasuyuki*; Takeda, Yukiharu; Wadachi, Hiroki*; Kohama, Yoshimitsu*; et al.

Nano Letters, 19(12), p.8806 - 8810, 2019/12

 Times Cited Count:46 Percentile:91.62(Chemistry, Multidisciplinary)

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2019

Takeuchi, Ryuji; Iwatsuki, Teruki; Matsui, Hiroya; Ikeda, Koki; Mikake, Shinichiro; Hama, Katsuhiro; Iyatomi, Yosuke; Matsuoka, Toshiyuki; Sasao, Eiji

JAEA-Review 2019-014, 30 Pages, 2019/10

JAEA-Review-2019-014.pdf:4.72MB

The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency(JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock(granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important remaining issues on the geoscientific research program based on the synthesized latest results of research and development (R&D): "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technology". The R&D on three remaining important issues have been carrying out in the MIU Project. This report summarizes the R&D activities planned for fiscal year 2019 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase.

Journal Articles

Convergence behavior in line profile analysis using convolutional multiple whole-profile software

Kumagai, Masayoshi*; Uchida, Tomohiro*; Murasawa, Kodai*; Takamura, Masato*; Ikeda, Yoshimasa*; Suzuki, Hiroshi; Otake, Yoshie*; Hama, Takayuki*; Suzuki, Shinsuke*

Materials Research Proceedings, Vol.6, p.57 - 62, 2018/10

 Times Cited Count:0 Percentile:0.18

Journal Articles

Determination approach of dislocation density and crystallite size using a convolutional multiple whole profile software

Murasawa, Kodai*; Takamura, Masato*; Kumagai, Masayoshi*; Ikeda, Yoshimasa*; Suzuki, Hiroshi; Otake, Yoshie*; Hama, Takayuki*; Suzuki, Shinsuke*

Materials Transactions, 59(7), p.1135 - 1141, 2018/07

 Times Cited Count:7 Percentile:37.12(Materials Science, Multidisciplinary)

Journal Articles

Magnetic field induced phenomena in UIrGe in fields applied along the $$b$$ axis

Posp$'i$$v{s}$il, J.*; Haga, Yoshinori; Kohama, Yoshimitsu*; Miyake, Atsushi*; Kambe, Shinsaku; Tateiwa, Naoyuki; Vali$v{s}$ka, M.*; Proschek, P.*; Prokle$v{s}$ka, J.*; Sechovsk$'y$, V.*; et al.

Physical Review B, 98(1), p.014430_1 - 014430_7, 2018/07

 Times Cited Count:15 Percentile:62.22(Materials Science, Multidisciplinary)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2016

Ishibashi, Masayuki; Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Takeuchi, Ryuji; Nohara, Tsuyoshi; Onoe, Hironori; Ikeda, Koki; Mikake, Shinichiro; Iyatomi, Yosuke; et al.

JAEA-Review 2017-026, 72 Pages, 2018/01

JAEA-Review-2017-026.pdf:18.23MB

The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami, Gifu Prefecture, central Japan. On the occasion of the research program and management system revision of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technologies", based on the latest results of the synthesizing research and development (R&D). The R&D on three important issues have been carrying out on the MIU project. In this report, the current status of R&D activities and construction in 2016 is summarized.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2017

Ishibashi, Masayuki; Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Takeuchi, Ryuji; Ikeda, Koki; Mikake, Shinichiro; Iyatomi, Yosuke; Sasao, Eiji; Koide, Kaoru

JAEA-Review 2017-019, 29 Pages, 2017/10

JAEA-Review-2017-019.pdf:3.21MB

The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: "Development of countermeasure technologies for reducing groundwater inflow", "Development of modelling technologies for mass transport" and "Development of drift backfilling technology", based on the latest results of the synthesizing research and development (R&D). These R&D on three remaining important issues have been carrying out on the MIU project. This report summarizes the R&D activities planned for fiscal year 2017 based on the MIU Master Plan updated in 2015 and so on.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2015

Ishimaru, Tsuneari; Umeda, Koji*; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; et al.

JAEA-Research 2016-023, 91 Pages, 2017/02

JAEA-Research-2016-023.pdf:13.33MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2015

Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Mikake, Shinichiro; Ishibashi, Masayuki; Onoe, Hironori; Takeuchi, Ryuji; Nohara, Tsuyoshi; Sasao, Eiji; Ikeda, Koki; et al.

JAEA-Review 2016-023, 65 Pages, 2016/12

JAEA-Review-2016-023.pdf:47.32MB

The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: "Development of countermeasure technologies for reducing groundwater inflow", "Development of modelling technologies for mass transport" and "Development of drift backfilling technologies", based on the latest results of the synthesizing research and development (R&D). These R&D on three important issues have been carrying out on the MIU project. In this report, the current status of R&D activities and construction in 2015 is summarized.

Journal Articles

Characteristics of micro transfer paths and diffusion phenomena in the matrix of deep crystalline rock

Ishibashi, Masayuki; Sasao, Eiji; Hama, Katsuhiro

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 23(2), p.121 - 130, 2016/12

Matrix diffusion is one of the important phenomena for safety assessment of radioactive waste disposal because it has an effect of retarding the mass transport in crystalline rocks. Although there is not enough knowledge on the matrix diffusion in unaltered (intact) rocks around fractures. Intact granitic rocks around fractures are affected by primary alteration related to hydrothermal fluid resulting from crystallization of granitic magma. Therefore, detailed observations were carried out to clarify the effects of primary alteration focused on the intact granite around fractures sampled from the MIU, central Japan. The results of observation provide that the micropores are formed in plagioclases affected by primary alteration and have the potential of acting as matrix diffusion paths. This is indicating the possibility that intact granitic rock around fractures in an orogenic belt such as Japan have also the retardation functions due to matrix diffusion.

Journal Articles

Cross-checking groundwater age by $$^{4}$$He and $$^{14}$$C dating in a granite, Tono area, central Japan

Hasegawa, Takuma*; Nakata, Kotaro*; Tomioka, Yuichi*; Goto, Kazuyuki*; Kashiwaya, Koki*; Hama, Katsuhiro; Iwatsuki, Teruki; Kunimaru, Takanori*; Takeda, Masaki

Geochimica et Cosmochimica Acta, 192, p.166 - 185, 2016/11

 Times Cited Count:9 Percentile:35.91(Geochemistry & Geophysics)

Groundwater dating was performed simultaneously by the $$^{4}$$He and $$^{14}$$C methods in granite of the Tono area in central Japan. Groundwater was sampled at 30 packed-off sections of six 1000-m boreholes. $$^{4}$$He concentrations increased and $$^{14}$$C concentrations decreased along a groundwater flow path on a topographic gradient. $$^{4}$$He ages were calculated by using the in situ $$^{4}$$He production rate derived from the porosity, density, and U and Th content of the rock, neglecting external flux. The linear relation between the $$^{4}$$He ages and the noncorrected $$^{14}$$C ages, except in the discharge area. Simultaneous measurements make it feasible to estimate the accumulation rate of $$^{4}$$He and initial dilution of $$^{14}$$C, which cannot be done with a single method. Cross-checking groundwater dating has the potential to provide more reliable groundwater ages.

Journal Articles

Texture evaluation in ductile fracture process by neutron diffraction measurement

Sunaga, Hideyuki*; Takamura, Masato*; Ikeda, Yoshimasa*; Otake, Yoshie*; Hama, Takayuki*; Kumagai, Masayoshi*; Suzuki, Hiroshi; Suzuki, Shinsuke*

Journal of Physics; Conference Series, 734(Part B), p.032027_1 - 032027_4, 2016/09

 Times Cited Count:0 Percentile:0.03

A neutron diffraction measurement was performed to reveal microstructural aspects of the ductile fracture in ferritic steel. The diffraction patterns were continuously measured at the center of the reduced area while a tensile specimen was loaded under tension until the end of the fracture process. The measurement results showed that the volume fraction of (110)-oriented grains increased when the texture evolved as a result of plastic deformation. But the mechanism of texture evolution may be changed during necking, decreasing an increase rate of the volume fraction.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2016)

Ishimaru, Tsuneari; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; Hama, Yuki

JAEA-Review 2016-016, 44 Pages, 2016/08

JAEA-Review-2016-016.pdf:2.28MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in JAEA, in fiscal year 2016. The objectives and contents in fiscal year 2016 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

106 (Records 1-20 displayed on this page)