Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 29

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a model for evaluating the luminescence intensity of phosphors based on the PHITS track-structure simulation

Hirata, Yuho; Kai, Takeshi; Ogawa, Tatsuhiko; Matsuya, Yusuke; Sato, Tatsuhiko

Nuclear Instruments and Methods in Physics Research B, 547, p.165183_1 - 165183_7, 2024/02

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The luminescence efficiency of the phosphors for swift ions is known to decrease because of the quenching effects. To obtain the precise dose distributions using phosphor detectors, understanding the mechanisms of quenching effects is mandatory. Here, we developed a new model for estimating the luminescence intensity of phosphors based on the track-structure modes for arbitrary materials implemented in PHITS. The developed model enabled the simulation of the quenching effects of the BaFBr detector and was verified by comparing the results to the corresponding measured data. The present model is expected to contribute to developing phosphor detectors worldwide.

Journal Articles

First-principles simulation of an ejected electron produced by monochromatic deposition energy to water at the femtosecond order

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke; Hirata, Yuho; Tezuka, Tomoya*; Tsuchida, Hidetsugu*; Yokoya, Akinari*

RSC Advances (Internet), 13(46), p.32371 - 32380, 2023/11

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

Although scientific knowledge of photolysis and radiolysis of water is widely used in the life sciences and other fields, the formation mechanism of the spatial distribution of hydrated electrons (spur) resulting from energy deposition to water is still not well understood. The chemical reaction times of hydrated electrons, OH radicals, and H$$_{3}$$O$$^{+}$$ in the spur strongly depend on the spur radius. In our previous study, we elucidated the mechanism at a specific given energy (12.4 eV) by first-principles calculations. In the present study, we performed first-principles calculations of the spur radius at the deposition energies of 11-19 eV. The calculated spur radius is 3-10 nm, which is consistent with the experimental prediction (~4 nm) for the energy range of 8-12.4 eV, and the spur radius gradually increases with increasing energy. The spur radius is a new scientific knowledge and is expected to be widely used for estimating radiation DNA damage.

Journal Articles

Development of an electron track-structure mode for arbitrary semiconductor materials in PHITS

Hirata, Yuho; Kai, Takeshi; Ogawa, Tatsuhiko; Matsuya, Yusuke*; Sato, Tatsuhiko

Japanese Journal of Applied Physics, 62(10), p.106001_1 - 106001_6, 2023/10

 Times Cited Count:2 Percentile:75.57(Physics, Applied)

Optimization of semiconductor detector design requires theoretical analysis of the process of radiation conversion to carriers (excited electrons) in semiconductor materials. We, therefore, developed an electron track-structure code that can trace an incident electron trajectory down to a few eV and simulate many excited electron productions in semiconductors, named ETSART, and implemented it into PHITS. The accuracy of ETSART was validated by comparing calculated electron ranges in semiconductor materials with the corresponding data recommended in ICRU Report 37 and obtained from another simulation code. The average energy required to produce a single excited electron (epsilon value) is an important value that describes the characteristics of semiconductor detectors. Using ETSART, we computed the epsilon values in various semiconductors and found that the calculated epsilon values cannot be fitted well with a linear model of the band-gap energy. ETSART is expected to be useful for initial and mechanistic evaluations of electron-hole generation in undiscovered materials.

Journal Articles

Improvement of the hybrid approach between Monte Carlo simulation and analytical function for calculating microdosimetric probability densities in macroscopic matter

Sato, Tatsuhiko; Matsuya, Yusuke*; Ogawa, Tatsuhiko; Kai, Takeshi; Hirata, Yuho; Tsuda, Shuichi; Parisi, A.*

Physics in Medicine & Biology, 68(15), p.155005_1 - 155005_15, 2023/07

 Times Cited Count:2 Percentile:84.52(Engineering, Biomedical)

In this study, we improved the microdosimetric function implemented in PHITS using the latest track-structure simulation codes. The improved function is capable of calculating the probability densities of not only the conventional microdosimetric quantities such as lineal energy but also the numbers of ionization events occurred in a target site, the so-called ionization cluster size distribution, for arbitrary site diameters from 3 nm to 1 um. As a new application of the improved function, we calculated the relative biological effectiveness of the single-strand break and double-strand break yields for proton irradiations using the updated PHITS coupled with the simplified DNA damage estimation model, and confirmed its equivalence in accuracy and its superiority in computational time compared to our previously proposed method based on the track-structure simulation.

Journal Articles

Initial yield of hydrated electron production from water radiolysis based on first-principles calculation

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke*; Hirata, Yuho; Tezuka, Tomoya*; Tsuchida, Hidetsugu*; Yokoya, Akinari*

RSC Advances (Internet), 13(11), p.7076 - 7086, 2023/03

 Times Cited Count:3 Percentile:81.33(Chemistry, Multidisciplinary)

Scientific insights of water radiolysis are widely used in the life sciences and so on, however, the formation mechanism of radicals, a product of water radiolysis, is still not well understood. We are challenging to develop a simulation code to solve this formation mechanism from the viewpoint of radiation physics. Our first-principles calculations have revealed that the behavior of secondary electrons in water is governed not only by collisional effects but also by polarization effects. Furthermore, from the predicted ratio of ionization to electronic excitation, based on the spatial distribution of secondary electrons, we successfully reproduce the initial yield of hydrated electrons predicted in terms of radiation chemistry. The code provides us a reasonable spatiotemporal connection from radiation physics to radiation chemistry. Our findings are expected to provide newly scientific insights for understanding the earliest stages of water radiolysis.

Journal Articles

Recent improvements of the Particle and Heavy Ion Transport code System; PHITS version 3.33

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuya, Yusuke; Matsuda, Norihiro; Hirata, Yuho; et al.

Journal of Nuclear Science and Technology, 9 Pages, 2023/00

 Times Cited Count:5 Percentile:98.08(Nuclear Science & Technology)

The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.31, was recently developed and released to the public. In the new version, the compatibility with high-energy nuclear data libraries and the algorithm of the track-structure modes have been improved. In this paper, we summarize the upgraded features of PHITS3.31 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.

Journal Articles

A Step-by-step simulation code for estimating yields of water radiolysis species based on electron track-structure mode in the PHITS code

Matsuya, Yusuke; Yoshii, Yuji*; Kusumoto, Tamon*; Akamatsu, Ken*; Hirata, Yuho; Sato, Tatsuhiko; Kai, Takeshi

Physics in Medicine & Biology, 19 Pages, 2023/00

 Times Cited Count:0 Percentile:0.05(Engineering, Biomedical)

Time-dependent yields of chemical products resulted in water radiolysis play a great role in evaluating DNA damage response after exposure to ionizing radiation. Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo simulation code for radiation transport, which allows to determine several atomic interactions such as ionizations and electronic excitations as physical stage. However, a chemical code for simulating products of water radiolysis does not exist in the PHITS package. Here, we developed a chemical simulation code dedicated for the PHITS code, hereafter called PHITS-Chem code, which enables calculating G values of water radiolysis species (OH radical, e$$_{aq}$$$$^{-}$$, H$$_{2}$$, H$$_{2}$$O$$_{2}$$ etc) by electron beams. The estimated G values during 1 $$mu$$s are in agreement with the experimental ones and other simulations. This PHITS-Chem code enables simulating the dynamics in the presence of OH radical scavenger, and is useful for evaluating contributions of direct and indirect effects on DNA damage induction. This code will be included and be available in the future version of PHITS.

Journal Articles

New feature of PHITS dedicated to calculate the atomic-size transport of radiation

Ogawa, Tatsuhiko; Hirata, Yuho; Matsuya, Yusuke; Kai, Takeshi

Isotope News, (784), p.13 - 16, 2022/12

Track-structure calculation, a method to simulate every secondary electron production reaction explicitly, has been extensively used as an important techniques in various fields such as radiation biology, material irradiation effect, and radiation detection. However, it requires the dielectric function of the target materials, which is not well known except for liquid water. Therefore we developed a model to perform track-structure calculation based on a systematic formula of secondary electron production cross section and that of stopping power. The model can therefore perform track-structure calculation regardless of the availability of dielectric function measurement data. Stopping range, and energy deposition radial distribution calculated by this model agreed well with the earlier experimental data and calculation by precedent codes. The lineal energy in tissue-equivalent gas calculated by this model agreed with measurement data taken from literature, showing distinct difference from that in liquid water. This model was implemented to PHITS Ver3.25, the general-purpose radiation transport simulation code of JAEA, being distributed to users as the first track-structure calculation model applicable to arbitrary materials available in general-purpose transport code.

Journal Articles

Implementation of the electron track-structure mode for silicon into PHITS for investigating the radiation effects in semiconductor devices

Hirata, Yuho; Kai, Takeshi; Ogawa, Tatsuhiko; Matsuya, Yusuke; Sato, Tatsuhiko

Japanese Journal of Applied Physics, 61(10), p.106004_1 - 106004_6, 2022/10

 Times Cited Count:5 Percentile:67.2(Physics, Applied)

Some radiation effects such as pulse-height defects and soft errors can cause problems in silicon (Si) devices. Local energy deposition in microscopic scales is essential information to elucidate the mechanism of these radiation effects. We, therefore, developed an electron track-structure model, which can simulate local energy deposition down to nano-scales, dedicated to Si and implemented it into PHITS. Then, we verified the accuracy of our developed model by comparing the ranges and depth-dose distributions of electrons obtained from this study with the corresponding experimental values and other simulated results. As an application of the model, we calculated the mean energies required to create an electron-hole pair, the so-called epsilon value. We found that the threshold energy for generating secondary electrons reproducing the epsilon value is 2.75 eV, consistent with the corresponding data deduced from past theoretical and computational studies. Since the magnitudes of the radiation effects on Si devices largely depend on the epsilon value, the developed code is expected to contribute to precisely understanding the mechanisms of pulse-height defects and semiconductor soft errors.

Journal Articles

Impact of the Lorentz force on electron track structure and early DNA damage yields in magnetic resonance-guided radiotherapy

Yachi, Yoshie*; Kai, Takeshi; Matsuya, Yusuke; Hirata, Yuho; Yoshii, Yuji*; Date, Hiroyuki*

Scientific Reports (Internet), 12, p.16412_1 - 16412_8, 2022/09

 Times Cited Count:2 Percentile:47.19(Multidisciplinary Sciences)

Recently, magnetic resonance-guided radiotherapy (MRgRT) which can visualize tumors in real time has been developed and installed in several clinical facilities. It is known that Lorentz force modulate macroscopic dose distribution by a charged particle, however, the impact by the force on microscopic radiation-track structure and early DNA damage induction remain unclear. In this study, we simulated the electron-track structure in a static magnetic field using a PHITS, and estimated features of biological effects. We indicated that the macroscopic dose distributions are changed by the force, while early DNA damage such as double strand breaks is attributed to the secondary electrons below a few tens of eV which are independent of the force. We expect that our insight significantly contributes to the MRgRT.

Journal Articles

Theoretical and experimental estimation of the relative optically stimulated luminescence efficiency of an optical-fiber-based BaFBr:Eu detector for swift ions

Hirata, Yuho; Sato, Tatsuhiko; Watanabe, Kenichi*; Ogawa, Tatsuhiko; Parisi, A.*; Uritani, Akira*

Journal of Nuclear Science and Technology, 59(7), p.915 - 924, 2022/07

 Times Cited Count:7 Percentile:91.6(Nuclear Science & Technology)

The reliability of dose assessment with radiation detectors is an important feature in various fields, such as radiotherapy, radiation protection, and high-energy physics. However, many detectors irradiated by high linear energy transfer (LET) radiations exhibit decreased efficiency called the quenching effect. This quenching effect depends not only on the particle LET but strongly on the ion species and its microscopic pattern of energy deposition. Recently, a computational method for estimating the relative efficiency of luminescence detectors was proposed following analysis of microdosimetric specific energy distributions simulated using the particle and heavy ion transport code system (PHITS). This study applied the model to estimate the relative optically stimulated luminescence (OSL) efficiency of BaFBr:Eu detectors. Additionally, we measured the luminescence intensity of BaFBr:Eu detectors exposed to $$^{4}$$He, $$^{12}$$C and $$^{20}$$Ne ions to verify the calculated data. The model reproduced the experimental data in the cases of adopting a microdosimetric target diameter of approximately 30-50 nm. The calculated relative efficiency exhibit ion-species dependence in addition to LET. This result shows that the microdosimetric calculation from specific energy is a successful method for accurately understanding the results of OSL measurements with BaFBr:Eu detectors irradiated by various particles.

Journal Articles

Features of accelerator-based neutron source for boron neutron capture therapy calculated by Particle and Heavy Ion Transport code System (PHITS)

Matsuya, Yusuke; Kusumoto, Tamon*; Yachi, Yoshie*; Hirata, Yuho; Miwa, Misako*; Ishikawa, Masayori*; Date, Hiroyuki*; Iwamoto, Yosuke; Matsuyama, Shigeo*; Fukunaga, Hisanori*

AIP Advances (Internet), 12(2), p.025013_1 - 025013_9, 2022/02

 Times Cited Count:4 Percentile:59.24(Nanoscience & Nanotechnology)

Boron Neutron Capture Therapy (BNCT) is a radiation therapy, which can selectively eradicate solid tumors by $$alpha$$-particles and Li ions generated through the nuclear reaction between thermal neutron and $$^{10}$$B in tumor cells. With the development of accelerator-based neutron sources that can be installed in medical institutions, accelerator-based boron neutron capture therapy is expected to become available at several medical institutes around the world in the near future. Lithium is one of the targets that can produce thermal neutrons from the $$^{7}$$Li(p,n)$$^{7}$$Be near-threshold reaction. Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo code, which can simulate a variety of diverse particle types and nuclear reactions. The latest PHITS code enables simulating the generation of neutrons from the $$^{7}$$Li(p,n)$$^{7}$$Be reactions by using Japanese Evaluated Nuclear Data Library (JENDL-4.0/HE). In this study, we evaluated the neutron fluence using the PHITS code by comparing it to reference data. The subsequent neutron transport simulations were also performed to evaluate the boron trifluoride (BF$$_{3}$$) detector responses and the recoiled proton fluence detected by a CR-39 plastic detector. As a result, these comparative studies confirmed that the PHITS code can accurately simulate neutrons generated from an accelerator using a Li target. The PHITS code has a significant potential for contributing to more precise evaluating accelerator-based neutron fields and understandings of therapeutic effects of BNCT.

Journal Articles

Track-structure modes in Particle and Heavy Ion Transport code System (PHITS); Application to radiobiological research

Matsuya, Yusuke; Kai, Takeshi; Sato, Tatsuhiko; Ogawa, Tatsuhiko; Hirata, Yuho; Yoshii, Yuji*; Parisi, A.*; Liamsuwan, T.*

International Journal of Radiation Biology, 98(2), p.148 - 157, 2022/02

 Times Cited Count:15 Percentile:80.59(Biology)

When investigating radiation-induced biological effects, it is essential to perform detailed track-structure simulations explicitly by considering each atomic interaction in liquid water (which is equivalent to human tissues) at sub-cellular and DNA scales. The Particle and Heavy Ion Transport code System (PHITS) is a Monte Carlo code which can be used for track structure calculations by employing an original electron track-structure mode (etsmode) and the world-famous KURBUC algorithms (PHITS-KURBUC mode) for protons and carbon ions. In this study, the physical features (i.e., range, radial dose and microdosimetry) of these modes have been verified by comparing to the available experimental data and Monte Carlo simulation results reported in literature. In addition, applying the etsmode to radiobiological study, we estimated the yields of single-strand breaks (SSBs), double-strand breaks (DSBs) and complex DSBs, and evaluated the dependencies of DNA damage yields on incident electron energy. As a result, the simulations suggested that DNA damage types are intrinsically related with the spatial patterns of ionization and electronic excitations and that approximately 500 eV electron can cause much complex DSBs. In this paper, we show the development status of the PHITS track-structure modes and its application to radiobiological research, which would be expected to identify the underlying mechanisms of radiation effects based on physics.

Journal Articles

Development and validation of proton track-structure model applicable to arbitrary materials

Ogawa, Tatsuhiko; Hirata, Yuho; Matsuya, Yusuke; Kai, Takeshi

Scientific Reports (Internet), 11(1), p.24401_1 - 24401_10, 2021/12

 Times Cited Count:14 Percentile:76.83(Multidisciplinary Sciences)

Track-structure calculation, a method to simulate every secondary electron production reaction explicitly, has been extensively used as an important techniques in various fields such as radiation biology, material irradiation effect, and radiation detection. However, it requires the dielectric function of the target materials, which is not well known except for liquid water. Therefore we developed a model to perform track-structure calculation based on a systematic formula of secondary electron production cross section and that of stopping power. The model can therefore perform track-structure calculation regardless of the availability of dielectric function measurement data. Stopping range, and energy deposition radial distribution calculated by this model agreed well with the earlier experimental data and calculation by precedent codes. The lineal energy in tissue-equivalent gas calculated by this model agreed with measurement data taken from literature, showing distinct difference from that in liquid water. This model was implemented to PHITS Ver3.25, the general-purpose radiation transport simulation code of JAEA, being distributed to users as the first track-structure calculation model applicable to arbitrary materials available in general-purpose transport code.

Journal Articles

Track-structure mode for electrons, protons and carbon ions in the PHITS code

Matsuya, Yusuke; Kai, Takeshi; Ogawa, Tatsuhiko; Hirata, Yuho; Sato, Tatsuhiko

Hoshasen Kagaku (Internet), (112), p.15 - 20, 2021/11

Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo code enabling radiation kinetics, which is often used in diverse research fields, such as atomic energy, engineering, medicine and science. After released in 2010, the PHITS code has been developed to expand its functions and to improve its convenience. In the few years, track-structure mode has been introduced in PHITS that can simulate each atomic interaction by electrons, positions, protons and carbon ions in liquid water. Thanks to the development of track-structure mode, the latest PHITS code enables microscopic dose calculations by decomposing it to the scale of DNA. Aiming at realizing the track-structure mode with high precision, the further developments of electron and ion track-structure mode for arbitrary materials are recently ongoing. This review shows the development history and future prospect of PHITS track-structure mode, which can expect to be further applied to the research fields of atomic physics, radiation chemistry, and quantum life science.

Oral presentation

Crystallographic characterization on different types of structure (Tsukurikomi) of Japanese swords using pulsed neutron imaging and diffraction methods

Oikawa, Kenichi; Kiyanagi, Yoshiaki*; Shinohara, Takenao; Kai, Tetsuya; Watanabe, Kenichi*; Uritani, Akira*; Hori, Genki*; Hirata, Yuho*

no journal, , 

Oral presentation

Application to the calculation of detector response function

Hirata, Yuho

no journal, , 

Detectors such as scintillators show a decrease in sensitivity to high-energy charged particles, however, conventional radiation behavior calculation codes cannot accurately reproduce these decreases. We focused on the concentration of energy applied to minute regions related to sensitivity reduction and developed a model that predicts the response function of the detector using PHITS. In this presentation, we introduce a method to predict the response of a detector by calculating the energy deposition density using the microdosimetry function implemented in PHITS. We measured the response of the radiation-induced phosphor BaFBr:Eu used as a detector to high-energy charged particles and calculated the energy deposition density by PHITS. We have developed a method to calculate the luminescence efficiency by combining the calculated energy deposition density and the response to gamma-ray irradiation and succeeded in reproducing the measured value of the luminescence efficiency of BaFBr:Eu for high-energy charged particles. We will develop a method for theoretically predicting the response of phosphors using the track structure analysis mode of PHITS.

Oral presentation

Extension of PHITS track structure calculation mode

Ogawa, Tatsuhiko; Kai, Takeshi; Hirata, Yuho; Matsuya, Yusuke

no journal, , 

Track structure calculation is a technique to predict energy deposition in sub-micro meter to nano meter scale by tracking electrons down to a few eVs. Conventional track structure calculation codes predict electron transport using the cross section of target materials calculated based on dielectric functions, in other words, response to electro-magnetic waves. Owing to this procedure, they are applicable merely to materials whose dielectric function is measured in a wide frequency range. Therefore in this study, a track structure mode is developed by using stopping power formula and secondary electron energy distribution systematics. In this study, stopping power and secondary electron energy were calculated by ATIMA and Rudd's formula, respectively. Stopping range, radial dose distribution, and stochastic energy deposition distribution calculated by our code agreed well with literature data indicating validity of our model. This model is going to be implemented to the next release of PHITS to be used by users.

Oral presentation

Development of electron track structure simulation code for evaluating the radiation effect on Si material

Hirata, Yuho; Kai, Takeshi; Ogawa, Tatsuhiko; Matsuya, Yusuke; Sato, Tatsuhiko

no journal, , 

The pulse-height defect in the heavy-ions measurement by the Si semiconductor detector is a problem of accurate measurement. Besides, soft errors that cause malfunctions of electronic devices are caused by the radiation interaction of Si semiconductor memory. To study the mechanism of these phenomena, we developed an electron track structure simulation code for Si material. In this work, we prepared the cross-sections for the track structure simulation for Si and calculated the energy transfer process of the radiation down to very low energy. The developed simulation code was implemented in PHITS and succeeded in calculating the electron track in Si. The epsilon value that is the energy required to generate an electron carrier, was calculated as 3.62 eV, which corresponds to the experimental value. For future work, we will analyze the pulse-height defect in the Si semiconductor detector using the developed track structure simulation code.

Oral presentation

Development of track structure calculation mode for detector response simulation

Ogawa, Tatsuhiko; Hirata, Yuho; Matsuya, Yusuke; Kai, Takeshi

no journal, , 

Track-structure calculation, a method to simulate every secondary electron production reaction explicitly, has been extensively used as an important techniques in various fields such as radiation biology, material irradiation effect, and radiation detection. However, it requires the dielectric function of the target materials, which is not well known except for liquid water. Therefore we developed a model to perform track-structure calculation based on a systematic formula of secondary electron production cross section and that of stopping power. The model can therefore perform track-structure calculation regardless of the availability of dielectric function measurement data. Stopping range, and energy deposition radial distribution calculated by this model agreed well with the earlier experimental data and calculation by precedent codes. The lineal energy in tissue-equivalent gas calculated by this model agreed with measurement data taken from literature, showing distinct difference from that in liquid water. This model was implemented to PHITS Ver3.25, the general-purpose radiation transport simulation code of JAEA, being distributed to users as the first track-structure calculation model applicable to arbitrary materials available in general-purpose transport code.

29 (Records 1-20 displayed on this page)