Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Experiments on the release of gaseous iodine from $$gamma$$-irradiated aqueous CsI solution and influence of oxygen and Methyl Isobutyl Ketone (MIBK)

Moriyama, Kiyofumi; Tashiro, Shinsuke; Chiba, Noriaki; Hirayama, Fumio*; Maruyama, Yu; Nakamura, Hideo; Watanabe, Atsushi*

Journal of Nuclear Science and Technology, 47(3), p.229 - 237, 2010/03

 Times Cited Count:19 Percentile:75.78(Nuclear Science & Technology)

The volatile iodine production due to radiation chemistry is an important uncertainty source in the source term evaluation for LWRs. The gaseous release of molecular iodine and organic iodine from $$gamma$$-irradiated ($$sim 7$$kGy/h, 2h) cesium iodide aqueous solution (1E-4M) containing methyl-isobuthyl-ketone (MIBK) was measured. The solution was buffered at pH$$sim$$7. The concentration of MIBK (up to 1E-3M) and oxygen were changed as parameters. The total iodine release fraction and the fraction released as organic iodine were 2-47% and 0.02-1.5%, respectively, at the end of the irradiation. With the same cover gas condition, the total iodine release decreased and the organic iodine release increased when the MIBK concentration increased. This behavior can be explained by branching of the reaction path of organic degradation depending on availability of dissolved oxygen and competition between iodine and organic compounds on the consumption of radicals.

Journal Articles

Contributions of direct and indirect actions in cell killing by high-LET radiations

Hirayama, Ryoichi*; Ito, Atsushi*; Tomita, Masanori*; Tsukada, Teruyo*; Yatagai, Fumio*; Noguchi, Miho; Matsumoto, Yoshitaka*; Kase, Yuki*; Ando, Koichi*; Okayasu, Ryuichi*; et al.

Radiation Research, 171(2), p.212 - 218, 2009/02

 Times Cited Count:118 Percentile:95.59(Biology)

The biological effects of radiation originate principally in damages to DNA. DNA damages by X-rays as well as heavy ions are induced by a combination of direct and indirect actions. The contribution of indirect action in cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide (DMSO), which suppresses indirect action without affecting direct action. Exponentially growing Chinese hamster V79 cells were exposed to high-LET radiations of 20 to 2106 keV/$$mu$$m in the presence or absence of DMSO and their survival was determined using a colony formation assay. The contribution of indirect action to cell killing decreased with increasing LET. However, the contribution did not reach zero even at very high LETs and was estimated to be 32% at an LET of 2106 keV/$$mu$$m. Therefore, even though the radiochemically estimated G value of OH radicals was nearly zero at an LET of 1000 keV/$$mu$$m, indirect action by OH radicals contributed to a substantial fraction of the biological effects of high-LET radiations. The RBE determined at a survival level of 10% increased with LET, reaching a maximum value of 2.88 at 200 keV/$$mu$$m, and decreased thereafter. When the RBE was estimated separately for direct action (RBE(D)) and indirect action (RBE(I)); both exhibited an LET dependence similar to that of the RBE, peaking at 200 keV/$$mu$$m. However, the peak value was much higher for RBE(D) (5.99) than RBE(I) (1.89). Thus direct action contributes more to the high RBE of high-LET radiations than indirect action does.

Journal Articles

Research and development on environmental radionuclides for nuclear non-proliferation at Japan Atomic Energy Agency

Usuda, Shigekazu; Shinohara, Nobuo; Sakurai, Satoshi; Magara, Masaaki; Miyamoto, Yutaka; Esaka, Fumitaka; Yasuda, Kenichiro; Kokubu, Yoko; Hirayama, Fumio; Lee, C. G.; et al.

KEK Proceedings 2007-16, p.13 - 22, 2008/02

For the purpose of controlling and monitoring radiations and radioactive materials emitted from nuclear facilities to the environment and also evaluating their effects, various R&D on environmental radioactivity has been carried out at Japan Atomic Energy Agency (JAEA). Especially, for the abolition of nuclear weapons and for peaceful uses nuclear energy, ultra-trace analysis of environmental samples for safeguards and ultra-high sensitive monitoring of radionuclides for the CTBT verification, which have been scheduled in the middle of 1990s, have been promotted under the auspices of the Japanese Government at JAERI, the former of JAEA. In this presentation, the outline of R&D on environmental radioactivity for nuclear non-proliferation is introduced. In addition, applications of the developed techniques and future perspectives will be discussed.

Journal Articles

Development of safeguards environmental sample analysis techniques at JAEA as a network laboratory of IAEA

Sakurai, Satoshi; Magara, Masaaki; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Inagawa, Jun; Suzuki, Daisuke; Iguchi, Kazunari; Kokubu, Yoko; et al.

STI/PUB/1298 (CD-ROM), p.791 - 799, 2007/08

no abstracts in English

Journal Articles

Challenge to ultra-trace analytical techniques of nuclear materials in environmental samples for safeguards at JAERI; Methodologies for physical and chemical form estimation

Usuda, Shigekazu; Yasuda, Kenichiro; Kokubu, Yoko; Esaka, Fumitaka; Lee, C. G.; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Hirayama, Fumio; Fukuyama, Hiroyasu; et al.

International Journal of Environmental Analytical Chemistry, 86(9), p.663 - 675, 2006/08

 Times Cited Count:14 Percentile:40.18(Chemistry, Analytical)

The IAEA introduced the environmental sample analysis method, as a powerful tool to detect undeclared nuclear activities, into strengthened safeguards system. The principle of the method is that nuclear signatures can be evidenced if trace amount of nuclear materials in environmental samples taken from inside and outside of nuclear facilities are accurately analyzed. Currently, isotope ratios of uranium and plutonium in "swipe" samples are measured, which are collected in nuclear facilities. In future, the subject of environmental sample analysis will expand to soil, sediment, vegetation, water and airborne dust taken from outside of the nuclear facilities. If physical and chemical form of the nuclear materials is identified, we may estimate their origin, treatment process and migration behavior. This paper deals with the developed analytical techniques for the safeguards environmental samples, the current R&D on techniques related to estimation of the physical and chemical form, and possible analytical methodologies applicable to ultra-trace amounts of nuclear materials.

Journal Articles

Development of analytical techniques for safeguards environmental samples at JAEA

Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Inagawa, Jun; Suzuki, Daisuke; et al.

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-27-Kai Nenji Taikai Rombunshu (CD-ROM), 9 Pages, 2006/00

no abstracts in English

Journal Articles

R&D on safeguards environmental sample analysis at JAERI

Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

no abstracts in English

Journal Articles

Development of analytical techniques for safeguards environmental samples; Bulk analysis

Hirayama, Fumio; Kurosawa, Setsumi; Magara, Masaaki; Ichimura, Seiji; Kono, Nobuaki; Suzuki, Daisuke; Inagawa, Jun; Goto, Mototsugu; Sakurai, Satoshi; Watanabe, Kazuo; et al.

KEK Proceedings 2005-4, p.184 - 192, 2005/08

no abstracts in English

Journal Articles

Development of analytical techniques for safeguards environmental samples

Magara, Masaaki; Usuda, Shigekazu; Sakurai, Satoshi; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Dai-26-Kai Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Nenji Taikai Rombunshu, p.157 - 164, 2005/00

JAERI has conducted the analysis of domestic and the IAEA samples. JAERI is developing the analytical techniques to improve the analytical ability for the safeguards environmental samples. For bulk analysis, study is focused on the improvement of reliability of isotope ratio measurements by ICP-MS. New chemical separation techniques are under development and a desolvation module is introduced to reduce the polyatomic interferences. In particle analysis, the sample preparation procedure for SIMS method is modified to measure the $$^{234}$$U/$$^{238}$$U and $$^{236}$$U/$$^{238}$$U ratios for individual particles. We are also developing fission track-TIMS method to measure uranium isotope ratios in particles of sub-micrometer size. A screening instrument of X-ray fluorescent analysis is equipped to measure elemental distribution on a swipe surface.

Journal Articles

Current status and newly introduced analytical techniques for safeguards environmental samples at JAERI

Magara, Masaaki; Usuda, Shigekazu; Sakurai, Satoshi; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, C. G.; Yasuda, Kenichiro; Kono, Nobuaki; Inagawa, Jun; et al.

Proceedings of INMM 46th Annual Meeting (CD-ROM), 8 Pages, 2005/00

JAERI has been developing analytical techniques for ultra-trace amounts of nuclear materials in the environmental samples in order to contribute to the strengthened safeguards system. Development of essential techniques for bulk and particle analysis of the environmental swipe sample has been established as an ultra-trace analytical method of uranium and plutonium. In January 2003, JAERI was qualified as a member of the IAEA network analytical laboratories for environmental samples. Since then, JAERI has conducted the analysis of domestic and the IAEA samples. From Japanese fiscal year 2003, the second phase of the project was started for the development of advanced techniques, such as analyzing minor actinides and fission products as well as uranium and plutonium, particle analysis using fission-track technique, more efficient particle analysis using ICP-TOFMS and screening by X-ray fluorescent analysis. This paper deals with the progress in the development of the new techniques, applications and future perspective.

JAEA Reports

None

Toyohara, Masumitsu*; Hirayama, Fumio*; Tamura, Toshiyuki*; Fukazawa, Takuji*; Igarashi, Noboru*

PNC TJ8164 96-010, 213 Pages, 1996/03

PNC-TJ8164-96-010.pdf:7.49MB

no abstracts in English

Oral presentation

Source term evaluation in containment vessel during late phase of severe accident, 9.2; Experiments on iodine chemistry under irradiation

Moriyama, Kiyofumi; Tashiro, Shinsuke; Hirayama, Fumio*; Maruyama, Yu; Nakamura, Hideo; Watanabe, Atsushi*

no journal, , 

no abstracts in English

Oral presentation

Characterization of secondary waste generated by Fukushima Daiichi Nuclear Power Station accident, 4; Characteristics comparison of the existing and additional multiple radio-nuclides removal system slurry

Fukuda, Yuhei; Hinai, Hiroshi; Shibata, Atsuhiro; Nomura, Kazunori; Ikeda, Akira*; Obata, Masamichi*; Ichikawa, Masashi*; Takahashi, Ryota*; Hirayama, Fumio*

no journal, , 

no abstracts in English

Oral presentation

Characterization of secondary waste generated by Fukushima Daiichi Nuclear Power Station accident, 5; Analysis of carbonate slurry sampled from high integrity container

Fukuda, Yuhei; Arai, Yoichi; Hinai, Hiroshi; Nomura, Kazunori; Ikeda, Akira*; Obata, Masamichi*; Ichikawa, Masashi*; Takahashi, Ryota*; Hirayama, Fumio*

no journal, , 

no abstracts in English

14 (Records 1-14 displayed on this page)
  • 1