Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 280

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Double diffusive dissolution model of UO$$_{2}$$ pellet in molten Zr cladding

Ito, Ayumi*; Yamashita, Susumu; Tasaki, Yudai; Kakiuchi, Kazuo; Kobayashi, Yoshinao*

Journal of Nuclear Science and Technology, 60(4), p.450 - 459, 2023/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:3 Percentile:80.29(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2020

Nakada, Akira; Nakano, Masanao; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Nemoto, Masashi; Tobita, Keiji; Futagawa, Kazuo; Yamada, Ryohei; Uchiyama, Rei; et al.

JAEA-Review 2021-062, 163 Pages, 2022/02

JAEA-Review-2021-062.pdf:2.87MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2020 to March 2021. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

Journal Articles

PSTEP: Project for solar-terrestrial environment prediction

Kusano, Kanya*; Ichimoto, Kiyoshi*; Ishii, Mamoru*; Miyoshi, Yoshizumi*; Yoden, Shigeo*; Akiyoshi, Hideharu*; Asai, Ayumi*; Ebihara, Yusuke*; Fujiwara, Hitoshi*; Goto, Tadanori*; et al.

Earth, Planets and Space (Internet), 73(1), p.159_1 - 159_29, 2021/12

 Times Cited Count:6 Percentile:52.8(Geosciences, Multidisciplinary)

The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.

Journal Articles

Sm valence determination of Sm-based intermetallics using $$^{149}$$Sm M$"{o}$ssbauer and Sm L$$_{rm III}$$-edge X-ray absorption spectroscopies

Tsutsui, Satoshi; Higashinaka, Ryuji*; Nakamura, Raito*; Fujiwara, Kosuke*; Nakamura, Jin*; Kobayashi, Yoshio*; Ito, Takashi; Yoda, Yoshitaka*; Kato, Kazuo*; Nitta, Kiyofumi*; et al.

Hyperfine Interactions, 242(1), p.32_1 - 32_10, 2021/12

 Times Cited Count:1 Percentile:84.42

Journal Articles

Rabi-oscillation spectroscopy of the hyperfine structure of muonium atoms

Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.

Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08

 Times Cited Count:12 Percentile:84.06(Optics)

Journal Articles

Reliability of J-PARC accelerator system over the past decade

Yamamoto, Kazami; Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*

JPS Conference Proceedings (Internet), 33, p.011016_1 - 011016_7, 2021/03

The Japan Proton Accelerator Research Complex (J-PARC) is a multipurpose facility for scientific experiments. The accelerator complex consists of a 400-MeV Linac, a 3-GeV Rapid-Cycling Synchrotron (RCS) and a 30-GeV Main Ring synchrotron (MR). The RCS delivers a proton beam to the neutron target and MR, and the MR delivers the beams to the neutrino target and the Hadron Experimental Facility. The first operation of the neutron experiments began in December 2008. Following this, the user operation has been continued with some accidental suspensions. These suspensions include the recovery work due to the Great East Japan Earthquake in March 2011 and the radiation leak incident at the Hadron Experimental Facility. In this report, we summarize the major causes of suspension, and the statistics of the reliability of J-PARC accelerator system is analyzed. Owing to our efforts to achieve higher reliability, the Mean Time Between Failure (MTBF) has been improved.

Journal Articles

Development of long pulse arc driven ion source for iBNCT

Shibata, Takanori*; Sugimura, Takashi*; Ikegami, Kiyoshi*; Takagi, Akira*; Sato, Masaharu*; Naito, Fujio*; Okoshi, Kiyonori; Hasegawa, Kazuo

JPS Conference Proceedings (Internet), 33, p.011009_1 - 011009_6, 2021/03

Upgrade of beam current in the Linac of Ibaraki Boron Neutron Capture Therapy (iBNCT) is one of the most important requirements to realize clinical trial. By 2018, the measurement of the produced neutrons characteristics and the neutron irradiation experiment for living cells have been done by producing 8-MeV proton beam current at the beryllium target with average current up to 2 mA. In order to satisfy the original clinical trial conditions, 5 mA average beam current is required at the target. For this goal, peak beam current extracted from the ion source should be increased to 60 mA from the present 30 mA with duty factor up to more than 10% (pulse width up to 1 ms and repetition rate up to more than 100 Hz). Stability of the peak current in the macro pulse is also important for the clinical application.

Journal Articles

Development of a bunch-width monitor for low-intensity muon beam below a few MeV

Sue, Yuki*; Yotsuzuka, Mai*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Inami, Kenji*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kitamura, Ryo; et al.

Physical Review Accelerators and Beams (Internet), 23(2), p.022804_1 - 022804_7, 2020/02

A destructive monitor to measure the longitudinal bunch width of a low-energy and low-intensity muon beam was developed. This bunch-width monitor (BWM) employed microchannel plates to detect a single muon with high time resolution. In addition, constant-fraction discriminators were adopted to suppress the time-walk effect. The time resolution was measured to be 65 ps in rms using a picosecond-pulsed laser. This resolution satisfied the requirements of the muon linac of the J-PARC E34 experiment. We measured the bunch width of negative-muonium ions accelerated with a radio-frequency quadrupole using the BWM. The bunch width was successfully measured to be $$sigma$$ 54 $$pm$$ 11 ns, which is consistent with the simulation.

Journal Articles

Development of inter-digital H-mode drift-tube linac prototype with alternative phase focusing for a muon linac in the J-PARC muon g-2/EDM experiment

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo; et al.

Journal of Physics; Conference Series, 1350, p.012054_1 - 012054_7, 2019/12

 Times Cited Count:5 Percentile:92.53

An inter-digital H-mode drift-tube linac (IH-DTL) is developed in a muon linac at the J-PARC E34 experiment. IH-DTL will accelerate muons from 0.34 MeV to 4.5 MeV at a drive frequency of 324 MHz. Since IH-DTL adopts an APF method, with which the beam is focused in the transverse direction using the rf field only, the proper beam matching of the phase-space distribution is required before the injection into the IH-DTL. Thus, an IH-DTL prototype was fabricated to evaluate the performance of the cavity and beam transmission. As a preparation of the high-power test, tuners and coupler are designed and fabricated. In this paper, the development of the tuner and the coupler and the result of the low-power measurement will be presented.

Journal Articles

Negative muonium ion production with a C12A7 electride film

Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.

Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12

 Times Cited Count:2 Percentile:73.65

Negative muonium atom ($$mu^+$$e$$^-$$e$$^-$$, Mu$$^-$$) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu$$^-$$ were 10$$^{-3}$$/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu$$^-$$ averaged energy: it was 0.2$$pm$$0.1keV.

Journal Articles

Disk and washer coupled cavity linac design and cold-model for muon linac

Otani, Masashi*; Futatsukawa, Kenta*; Mibe, Tsutomu*; Naito, Fujio*; Hasegawa, Kazuo; Ito, Takashi; Kitamura, Ryo; Kondo, Yasuhiro; Morishita, Takatoshi; Iinuma, Hiromi*; et al.

Journal of Physics; Conference Series, 1350, p.012097_1 - 012097_7, 2019/12

 Times Cited Count:2 Percentile:73.65

A disk and washer (DAW) coupled cavity linac (CCL) has been developed for a middle velocity part in a muon linac to measure muon anomalous magnetic moment and search for electric dipole moment. I will accelerate muons from $$v/c$$ = $$beta$$ = 0.3 to 0.7 at an operational frequency of 1.3GHz. In this poster, the cavity design, beam dynamics design, and the cold-model measurements will be presented.

Journal Articles

Bunch size measurement with high time resolution for RF accelerated muon beam

Sue, Yuki*; Iijima, Toru*; Inami, Kenji*; Yotsuzuka, Mai*; Iinuma, Hiromi*; Nakazawa, Yuga*; Otani, Masashi*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Futatsukawa, Kenta*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.55 - 60, 2019/07

The result of bunch size measurement of muon accelerated by RFQ up to 89 keV is presented in this paper. A four-stage muon linac for precise measurement of muon property is under construction in the J-PARC. The demonstration of the first muon RF acceleration with an RFQ linac was conducted and the transverse profile of the accelerated muons was measured in 2017. As one of the remaining issues for the beam diagnostic system, the longitudinal beam profile after the RFQ should be measured to match the profile to the designed acceptance of the subsequent accelerator. For this purpose, the new longitudinal beam monitor using the microchannel plate is under development. The time resolution of the monitor aims to be around 30 to 40 ps corresponding to 1% of a period of an operating frequency of the accelerator, which is 324 MHz. On November 2018, the bunch size of accelerated negative muonium ion of 89 keV with the RFQ was measured using this monitor at the J-PARC MLF. The measured bunch width is $$0.54pm0.13$$ ns, which is consistent with the simulation.

Journal Articles

Development of the longitudinal beam profile monitor with high time resolution for realization of low-emittance muon beam in the J-PARC E34 muon g-2/EDM experiment

Yotsuzuka, Mai*; Iijima, Toru*; Iinuma, Hiromi*; Inami, Kenji*; Otani, Masashi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kondo, Yasuhiro; Saito, Naohito; Shimomura, Koichiro*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.814 - 817, 2019/07

The J-PARC E34 experiment aims to measure the muon anomalous magnetic moment and the electric dipole moment with a high precision. In this experiment, thermal muonium is produced and ionized by laser resonance to generate ultra-slow muons, which are then accelerated in a multistage muon linac. In order to satisfy the experimental requirements, suppression of the emittance growth during the acceleration is necessary. Because the main cause of the emittance growth is beam mismatching between the accelerating stages, the transverse and longitudinal beam monitoring is important. The longitudinal beam monitor has to measure the bunch length with the resolution equivalent to tens of picoseconds, which is 1% of the acceleration phase of 324 MHz. In addition, it should be sensitive to single muon because the beam intensity is limited during the commissioning phase. To realize above requirements, we are developing a longitudinal beam monitor with a micro channel plate, and the test bench to evaluate the monitor performance. So far, the time resolution of the beam monitor was obtained to be 65 ps in RMS including the jitter on the test bench. We also succeeded in measuring the longitudinal bunch size of the muon beam accelerated by RFQ using the beam monitor. In this paper, the results of the performance evaluation for this beam monitor are reported.

Journal Articles

Development of RF input coupler for Inter-digital H-mode drift-tube linac prototype with alternative phase focusing in muon linac

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwashita, Yoshihisa*; Iwata, Yoshiyuki*; Otani, Masashi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kondo, Yasuhiro; Saito, Naohito; Sue, Yuki*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.404 - 407, 2019/07

An inter-digital H-mode drift-tube linac (IH-DTL) is developed in a muon linac at the J-PARC E34 experiment. IH-DTL will accelerate muons from 0.34 MeV to 4.5 MeV at a drive frequency of 324 MHz. Since IH-DTL adopts an APF method, with which the beam is focused in the transverse direction using the rf field only, the proper beam matching of the phase-space distribution is required before the injection into the IH-DTL. Thus, an IH-DTL prototype was fabricated to evaluate the performance of the cavity and beam transmission. As a preparation of the high-power test, tuners and coupler are designed and fabricated. In the low power measurement, we decided the loop structure with witch the VSWR = 1.01 and field distortion of within 7%. In this paper, the development of the tuner and the coupler and the result of the low-power measurement will be presented.

Journal Articles

Status of J-PARC accelerators

Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*; Yamamoto, Noboru*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1235 - 1239, 2019/07

After the summer shutdown in 2018, the J-PARC restarted user operation in late October. While beam power to the Materials and Life Science Experimental Facility (MLF) was 500 kW as before the summer shutdown, linac beam current was increased from 40 to 50 mA. Operation of the Main Ring (MR) was suspended due to the modification and/or maintenance of the Superkamiokande (neutrino detector) and Hadron experimental facility. The user operation was resumed in the middle of February for the Hadron experimental facility at 51 kW. But on March 18, one of the bending magnets in the beam transport line to the MR had a failure. It was temporary recovered and restored beam operation on April 5, but the failure occurred again on April 24 and the beam operation of the MR was suspended. In the fiscal year of 2018, the availabilities for the MLF, neutrino and hadron facilities are 94%, 86%, and 74%, respectively.

Journal Articles

Development of the longitudinal beam monitor with high time resolution for a muon linac in the J-PARC E34 experiment

Yotsuzuka, Mai*; Iijima, Toru*; Inami, Kenji*; Sue, Yuki*; Iinuma, Hiromi*; Nakazawa, Yuga*; Saito, Naohito; Hasegawa, Kazuo; Kondo, Yasuhiro; Kitamura, Ryo; et al.

Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2571 - 2574, 2019/06

The J-PARC E34 experiment aims to measure the muon anomalous magnetic moment and the electric dipole moment with a high precision. In this experiment, thermal muonium is produced and ionized by laser resonance to generate ultra-slow muons, which are then accelerated in a multistage muon linac. In order to satisfy the experimental requirements, suppression of the emittance growth during the acceleration is necessary. Because the main cause of the emittance growth is beam mismatching between the accelerating stages, the transverse and longitudinal beam monitoring is important. The longitudinal beam monitor has to measure the bunch length with the resolution equivalent to tens of picoseconds, which is 1% of the acceleration phase of 324 MHz. In addition, it should be sensitive to single muon because the beam intensity is limited during the commissioning phase. To realize above requirements, we are developing a longitudinal beam monitor with a micro channel plate, and the test bench to evaluate the monitor performance. So far, the time resolution of the beam monitor was obtained to be 65 ps in RMS including the jitter on the test bench. We also succeeded in measuring the longitudinal bunch size of the muon beam accelerated by RFQ using the beam monitor. Further improvement of the measurement system is needed to guarantee the required accuracy. In this paper, the results of the performance evaluation for this beam monitor are reported.

Journal Articles

A Bunch structure measurement of muons accelerated by RFQ using a longitudinal beam-profile monitor with high time resolution

Sue, Yuki*; Iijima, Toru*; Inami, Kenji*; Yotsuzuka, Mai*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Otani, Masashi*; Hasegawa, Kazuo; et al.

Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.37 - 40, 2019/06

The result of bunch size measurement of muon accelerated by RFQ up to 89 keV is presented in this paper. A four-stage muon linac for precise measurement of muon property is under construction in the J-PARC. The demonstration of the first muon RF acceleration with an RFQ linac was conducted and the transverse profile of the accelerated muons was measured in 2017. As one of the remaining issues for the beam diagnostic system, the longitudinal beam profile after the RFQ should be measured to match the profile to the designed acceptance of the subsequent accelerator. For this purpose, the new longitudinal beam monitor using the microchannel plate is under development. The time resolution of the monitor aims to be around 30 to 40 ps corresponding to 1% of a period of an operating frequency of the accelerator, which is 324 MHz. On November 2018, the bunch size of accelerated negative muonium ion of 89 keV with the RFQ was measured using this monitor at the J-PARC MLF. The measured bunch width is $$0.54pm0.13$$ ns, which is consistent with the simulation.

Journal Articles

Development of a muon linac for the g-2/EDM experiment at J-PARC

Otani, Masashi*; Kondo, Yasuhiro; Saito, Naohito; Hasegawa, Kazuo; 7 of others*; J-PARC E34 Collaboration*

JPS Conference Proceedings (Internet), 25, p.011027_1 - 011027_5, 2019/03

We are developing a linac dedicated to the muon acceleration. It enables us to measure the muon anomalous magnetic moment with an accuracy of 0.1 ppm and search for electric dipole moment with a sensitivity of 10$$^{-21}$$ cm to explore beyond Standard Model of elementary particle physics. As a first step for demonstration of the muon acceleration, we are developing the source of slow muon with which RFQ acceleration is conducted. This paper describes status of these developments.

280 (Records 1-20 displayed on this page)