Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 271

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Defect formation simulated by track structure calculation model

Ogawa, Tatsuhiko; Iwamoto, Yosuke

Nuclear Instruments and Methods in Physics Research B, 549, p.165255_1 - 165255_4, 2024/04

Atomic defect is one of the critical factors that determines the irradiation effects in materials. The atoms are recoiled by the impulse of incoming radiation, which changes the mechanical, electrical and chemical properties of the target materials. Methods to calculate atomic displacement based on nuclear reaction cross sections and Rutherford scattering cross sections were proposed but they were dedicated to calculation of the defect density in macroscopic scale whereas some phenomena are attributed to the topological arrangements of defects in microscopic scale. Application of a track-structure calculation model, ITSART implemented to a general-purpose radiation transport code PHITS for calculation of the topological arrangement of radiation-induced defects is proposed in this study. To verify the defect production calculated by ITSART, DPA (Displacement Per Atom) cross section in Cu was calculated and compared with literature data. The agreement indicates the accuracy of ITSART for calculating atomic displacement. By using the same methodology to a smaller volume, the defects in SiO$$_{2}$$ exposed to 600 MeV proton beam was calculated. PHITS users can make use of the outputs by forwarding them to other tools, such as molecular dynamics codes, to analyse the further evolution of the defects.

Journal Articles

Double-differential cross sections for charged particle emissions from $$alpha$$ particle impinging on Al at 230 MeV/u

Furuta, Toshimasa*; Uozumi, Yusuke*; Yamaguchi, Yuji; Iwamoto, Yosuke; Koba, Yusuke*; Velicheva, E.*; Kalinnikov, V.*; Tsamalaidze, Z.*; Evtoukhovitch, P.*

Journal of Nuclear Science and Technology, 61(2), p.230 - 236, 2024/02

Charged particle production from $$alpha$$ particle fragmentation reactions was investigated experimentally by measurement of 230-MeV/u $$alpha$$ particles bombarding an aluminum target. Double differential cross sections were measured for each ejectile of p, d, t, $$^{3}$$He, and $$^{4}$$He at laboratory angles between 15 and 60 deg. The results of analyzed data found the following common characteristics: (1) spectra of proton- and neutron-emission are similar in high energy region at forward angle, (2) triton-to-$$^{3}$$He ratio of $$alpha$$-breakup yield is 1:2, which is similar to lower incident energy experiment, and (3) the shape of broad peak formed by $$^{3}$$He and $$alpha$$ particles could be explained by the process with collision between induced $$alpha$$ particle and target nucleus.

Journal Articles

Report on the 2023 Nuclear Data Workshop

Iwamoto, Yosuke

Kaku Deta Nyusu (Internet), (137), p.54 - 61, 2024/02

The joint meeting of the Nuclear Data Workshop and the PHITS Workshop for the year 2023 was held at the Tokai-mura Industry and Information Plaza, on November 15$$sim$$17, 2023. The Nuclear Data Workshop was originally organized by the Japan Atomic Energy Research Institute and the Sigma Research Committee in 1978. This year, the Nuclear Science and Engineering Center is the main organizer and the author is the chairperson of the committee. The PHITS Workshop is a gathering of PHITS users and developers, where presentations are made on PHITS applications in the fields of radiation shielding, medicine, space, etc. This joint workshop was planned to provide a good opportunity to obtain new research perspectives through mutual research exchange. The meeting consisted of 14 presentations on nuclear data, 12 presentations on PHITS, and 25 poster presentations. In this report, we mainly introduce the lectures at the nuclear data workshop.

Journal Articles

Neutron-production double-differential cross sections of $$^{rm nat}$$Pb and $$^{209}$$Bi in proton-induced reactions near 100 MeV

Iwamoto, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Yashima, Hiroshi*; Nishio, Katsuhisa; Sugihara, Kenta*; $c{C}$elik, Y.*; et al.

Nuclear Instruments and Methods in Physics Research B, 544, p.165107_1 - 165107_15, 2023/11

The lack of double-differential cross-section (DDX) data for neutron production below the incident proton energy of 200 MeV hinders the validation of spallation models in technical applications, such as research and development of accelerator-driven systems (ADSs). The present study aims to obtain experimental DDX data for ADS spallation target materials in this energy region and identify issues related to the spallation models by comparing them with the analytical predictions. The DDXs for the ($$p, xn$$) reactions of $$^{rm nat}$$Pb and $$^{209}$$Bi in the 100-MeV region were measured over an angular range of 30$$^{circ}$$ to 150$$^{circ}$$ using the time-of-flight method. The measurements were conducted at Kyoto University utilizing the FFAG accelerator. The DDXs obtained were compared with calculation results from Monte Carlo-based spallation models and the evaluated nuclear data library, JENDL-5. Comparison between the measured DDX and analytical values based on the spallation models and evaluated nuclear data library indicated that, in general, the CEM03.03 model demonstrated the closest match to the experimental values. Additionally, the comparison highlighted several issues that need to be addressed in order to improve the reproducibility of the proton-induced neutron-production DDX in the 100 MeV region by these spallation models and evaluated nuclear data library.

Journal Articles

Calculation of radiation damage using PHITS and nuclear data and verification experiments

Iwamoto, Yosuke

Kaku Deta Nyusu (Internet), (136), p.7 - 13, 2023/10

The number of displacements per atom (dpa) derived from the NRT model is used as an index of irradiation damage in structural materials of nuclear facilities. On the other hand, in 2018, Nordlund reported the results of a non-thermal recombination correction (arc) of defects derived by molecular dynamics calculations. In order to enable irradiation damage estimation (NRT-dpa and arc-dpa) of materials, we have developed a method to evaluate the irradiation damage of materials over a wide energy range using the PHITS and the nuclear data library. In order to validate the calculation method, a cryogenic irradiation apparatus was developed, and measurements of the displacement damage cross sections related to dpa for proton irradiation were performed. This report presents a presentation report at the joint session of the Nuclear Data Division and the Materials Division of the Atomic Energy Society of Japan.

Journal Articles

Outcomes of WPEC SG47 on "Use of Shielding Integral Benchmark Archive and Database for Nuclear Data Validation"

Kodeli, I. A.*; Fleming, M.*; Cabellos, O.*; Leal, L.*; Celik, Y.*; Ding, Y.*; Jansky, B.*; Neudecker, D.*; Novak, E.*; Simakov, S.*; et al.

EPJ Web of Conferences, 284, p.15002_1 - 15002_8, 2023/05

Working Party on International Nuclear Data Evaluation Co-operation Subgroup 47 (WPEC SG47) entitled "Use of Shielding Integral Benchmark Archive and Database for Nuclear Data Validation" was started in June 2019 with the objectives to promote more systematic and wider use of shielding benchmark experiments in nuclear data and transport code validation and development, to provide feedback on the Shielding Integral Benchmark Archive and Database (SINBAD). Complementing the database with new features was discussed, for example providing the nuclear data sensitivity profiles more systematically would facilitate and better guide the use of data, and the information on the geometry, (radiation source) and materials is expected to allow an easier and less error prone computational model preparation for different transport codes. Examples of the use and some views on future development of the SINBAD benchmark database will be presented in the paper.

Journal Articles

Measurement of double-differential neutron yields for iron, lead, and bismuth induced by 107-MeV protons for research and development of accelerator-driven systems

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta*; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

EPJ Web of Conferences, 284, p.01023_1 - 01023_4, 2023/05

For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron, lead, and bismuth have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics. The measured TTNYs and DDXs were compared with calculations by the Monte Carlo transport code PHITS with its default physics model of INCL version 4.6 combined with GEM and those with the JENDL-4.0/HE nuclear data library.

Journal Articles

Neutron production in the interaction of 200-MeV deuterons with Li, Be, C, Al, Cu, Nb, In, Ta, and Au

Watanabe, Yukinobu*; Sadamatsu, Hiroki*; Araki, Shohei; Nakano, Keita; Kawase, Shoichiro*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.

EPJ Web of Conferences, 284, p.01041_1 - 01041_4, 2023/05

Intensive fast neutron sources using deuteron accelerators have been proposed for the study of medical RI production, radiation damage for fusion reactor materials, nuclear transmutation of radioactive waste, and so on. Neutron production data from various materials bombarded by deuterons are required for the design of such neutron sources. In the present work, we have conducted a systematic measurement of double-differential neutron production cross sections (DDXs) for a wide atomic number range of targets (Li, Be, C, Al, Cu, Nb, In, Ta, and Au) at an incident energy of 200 MeV in the Research Center for Nuclear Physics (RCNP), Osaka University. A deuteron beam accelerated to 200 MeV was transported to the neutron experimental hall and focused on a thin target foil. Emitted neutrons from the target were detected by two different-size EJ301 liquid organic scintillators located at two distances of 7 m and 20 m, respectively. The neutron DDXs were measured at six angles from 0$$^{circ}$$ to 25$$^{circ}$$). The neutron energy was determined by a conventional time-of-flight (TOF) method. The measured DDXs were compared with theoretical model calculations by the DEUteron-induced Reaction Analysis Code System (DEURACS) and PHITS. The result indicated that the DEURACS calculation provides better agreement with the measured DDXs than the PHITS calculation.

Journal Articles

Measurement of 107-MeV proton-induced double-differential thick target neutron yields for Fe, Pb, and Bi using a fixed-field alternating gradient accelerator at Kyoto University

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

Journal of Nuclear Science and Technology, 60(4), p.435 - 449, 2023/04

 Times Cited Count:0 Percentile:71.05(Nuclear Science & Technology)

Double-differential thick target neutron yields (TTNYs) for Fe, Pb, and Bi targets induced by 107-MeV protons were measured using the fixed-field alternating gradient accelerator at Kyoto University for research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research at the Kyoto University Critical Assembly (KUCA). Note that TTNYs were obtained with the time-of-flight method using a neutron detector system comprising eight neutron detectors; each detector has a small NE213 liquid organic scintillator and photomultiplier tube. The TTNYs obtained were compared with calculation results using Monte Carlo-based spallation models (i.e., INCL4.6/GEM, Bertini/GEM, JQMD/GEM, and JQMD/SMM/GEM) and the evaluated high-energy nuclear data library, i.e., JENDL-4.0/HE, implemented in the particle and heavy iontransport code system (PHITS). All models, including JENDL-4.0/HE, failed to predict high-energy peaks at a detector angle of 5$$^{circ}$$. Comparing the energy- and angle-integrated spallation neutron yields at energies of $$le$$20 MeV estimated using the measured TTNYs and the PHITS indicated that INCL4.6/GEM would be suitable for the Monte Carlo transport simulation of ADS reactor physics experiments at the KUCA.

Journal Articles

Benchmark shielding calculations for fusion and accelerator-driven sub-critical systems

Iwamoto, Yosuke; Tsuda, Shuichi; Ogawa, Tatsuhiko

Frontiers in Energy Research (Internet), 11, p.1085264_1 - 1085264_11, 2023/01

 Times Cited Count:0 Percentile:0.02(Energy & Fuels)

This review describes experimental data useful for validation of radiation shielding design in advanced reactor systems such as nuclear fusion and accelerator-driven subcritical systems (ADS) and calculations using the PHITS code and JENDL-4.0/HE. The relevant experiments have been conducted mainly in Japan and include (1) neutron spectra in iron shields using 14 MeV neutron sources, (2) leakage neutron spectra from spherical piles of various materials using 14 MeV neutron sources, (3) neutron spectra after penetration through shields using several tens of MeV neutron sources, (4) neutron spectra produced from the target by high-energy heavy-ion bombardment, and (5) induced radioactivity in concrete using heavy-ion nuclear reaction product particles as a source. Throughout, the experimental and calculated values were agreed well. These experimental data are also useful for the validation of all radiation transport calculation codes used in the design of advanced reactor systems.

Journal Articles

Estimation of double-differential cross-sections of $$^9$$Be(p,xn) reaction for new nuclear data library JENDL-5

Kunieda, Satoshi; Yamamoto, Kazuyoshi; Konno, Chikara; Iwamoto, Yosuke; Iwamoto, Osamu; Wakabayashi, Yasuo*; Ikeda, Yujiro*

Journal of Neutron Research, 24(3-4), p.329 - 335, 2023/01

We have evaluated double-differential cross-sections (DDX) of the $$^9$$Be(p,xn) reaction based on the function proposed by Wakabayashi et al. up to 12 MeV. Through compilation in the ENDF-6 format file, data processing, and neutronics analysis with MC simulation codes MCNP and PHITS to thick target yield (TTY) measurements, the function was re-confirmed to give more reasonable DDX data than those in our previous library JENDL-4.0/HE and ENDF/B-VIII.0. We finally decided to reduce the absolute cross-sections by 15% for our new nuclear data library JENDL-5 since the prediction ability of neutronics simulation was much better than that based on the original function. Through comprehensive comparisons of the simulation results on TTY at different proton energies and neutron emission angles, we conclude that JENDL-5 gives the best estimation in the world.

Journal Articles

Recent improvements of the Particle and Heavy Ion Transport code System; PHITS version 3.33

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuya, Yusuke; Matsuda, Norihiro; Hirata, Yuho; et al.

Journal of Nuclear Science and Technology, 9 Pages, 2023/00

The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.31, was recently developed and released to the public. In the new version, the compatibility with high-energy nuclear data libraries and the algorithm of the track-structure modes have been improved. In this paper, we summarize the upgraded features of PHITS3.31 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.

Journal Articles

Measurements of the neutron total and capture cross sections and derivation of the resonance parameters of $$^{181}$$Ta

Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto

Nuclear Science and Engineering, 18 Pages, 2023/00

Journal Articles

Direct energy conversion using Ni/SiC Schottky junction in $$^{237}$$Np and $$^{241}$$Am gamma ray regions

Fukuda, Tatsuo; Kobata, Masaaki; Shobu, Takahisa; Yoshii, Kenji; Kamiya, Junichiro; Iwamoto, Yosuke; Makino, Takahiro*; Yamazaki, Yuichi*; Oshima, Takeshi*; Shirai, Yasuhiro*; et al.

Journal of Applied Physics, 132(24), p.245102_1 - 245102_8, 2022/12

 Times Cited Count:0 Percentile:18.86(Physics, Applied)

Direct energy conversion has been investigated using Ni/SiC Schottky junctions with the irradiation of monochromatized synchrotron X-rays simulating the gamma rays of $$^{237}$$Np (30 keV) and $$^{241}$$Am (60 keV). From current-voltage measurements, electrical energies were obtained for both kinds of gamma rays. The energy conversion efficiencies were found to reach up to $$sim$$1.6%, which is comparable to those of a few other semiconducting systems reported thus far. This result shows a possibility of energy recovery from nuclear wastes using the present system, judging from the radiation tolerant nature of SiC. Also, we found different conversion efficiencies between the two samples. This could be understandable from hard X-ray photoelectron spectroscopy and secondary ion mass spectroscopy measurements, suggesting the formation of Ni-Si compounds at the interface in the sample with a poor performance. Hence, such combined measurements are useful to provide information that cannot be obtained by electrical measurements alone.

Journal Articles

Calculation of displacement damage dose of semiconductors using PHITS code

Iwamoto, Yosuke

JAEA-Conf 2022-001, p.97 - 102, 2022/11

In the space environment, radiation irradiate the semiconductors of the devices, and the atomic displacement caused by these radiation degrades the electrical performance of the devices. The atomic displacement of the semiconductor is proportional to the displacement damage (DDD), which is expressed by the non-ionizing energy loss (NIEL). In order to calculate the DDD of semiconductors for various radiation in space, we have developed a method for calculating the DDD in the PHITS code. When silicon was irradiated with protons, neutrons, and electrons, the results of the NIEL calculations by PHITS agreed with the numerical data obtained by the NIEL computer for semiconductors. The defect production efficiencies obtained from the recent molecular dynamic simulations for SiC, InAs, GaAs, and GaN semiconductors were also implemented in PHITS. The results show that GaAs is the most sensitive to displacement damage and SiC is the most resistant to damage when irradiated with 10 MeV protons.

Journal Articles

Measurement of 107-MeV proton-induced double-differential neutron yields for iron for research and development of accelerator-driven systems

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; Yashima, Hiroshi*; Nishio, Katsuhisa; et al.

JAEA-Conf 2022-001, p.129 - 133, 2022/11

For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors composed of the NE213 liquid organic scintillators and photomultiplier tubes, which were connected to a multi-channel digitizer mounted with a field-programmable gate array (FPGA), for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination applying the gate integration method to the FPGA. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics.

Journal Articles

Development of a method for calculating effective displacement damage doses in semiconductors and applications to space field

Iwamoto, Yosuke; Sato, Tatsuhiko

PLOS ONE (Internet), 17(11), p.e0276364_1 - e0276364_16, 2022/11

 Times Cited Count:1 Percentile:33.72(Multidisciplinary Sciences)

The displacement damage dose (DDD) has been used as an index to determine the lifetime of semiconductor devices used in space radiation environments. Recently, a new index, effective DDD, has been proposed, which takes into account the defect generation efficiency of materials obtained from molecular dynamics simulations. In this study, we developed a method to calculate both conventional and effective DDD for typical semiconductor materials such as SiC, InAs, GaAs, and GaN in the PHITS code. As a result, in the arsenic compounds InAs and GaAs, the number of defects increases due to amorphization and the effective DDD is larger than the conventional DDD, while in SiC the relationship is reversed due to defect recombination. The improved PHITS can be used to calculate the effective DDD of semiconductors in cosmic ray environments, and PHITS can make a significant contribution to the evaluation of radiation damage of new semiconductor devices in space.

Journal Articles

Benchmark study of particle and heavy-ion transport code system using shielding integral benchmark archive and database for accelerator-shielding experiments

Iwamoto, Yosuke; Hashimoto, Shintaro; Sato, Tatsuhiko; Matsuda, Norihiro; Kunieda, Satoshi; $c{C}$elik, Y.*; Furutachi, Naoya*; Niita, Koji*

Journal of Nuclear Science and Technology, 59(5), p.665 - 675, 2022/05

 Times Cited Count:3 Percentile:73.26(Nuclear Science & Technology)

A benchmark study of PHITS3.24 has been conducted using neutron-shielding experiments listed in the Shielding Integral Benchmark Archive and Database. Five neutron sources were selected, which are generated from (1) 43- and 68-MeV proton-induced reaction on a thin lithium target, (2) 52-MeV proton-induced reaction on a thick graphite target, (3) 590-MeV proton-induced reaction on a thick lead target, (4) 500-MeV proton-induced reaction on a thick tungsten target, and (5) 800-MeV proton-induced reaction on a thick tantalum target. For all cases, overall agreements in the results are satisfactory when using the JENDL-4.0/HE to simulate neutron- and proton-induced reactions up to 200 MeV. However, discrepancies using PHITS default settings are observed in the results. For an accurate neutron-shielding design for accelerator facilities, using JENDL-4.0/HE in the particle and heavy-ion transport code system calculation is favorable.

JAEA Reports

Neutronic analysis of beam window and LBE of an Accelerator-Driven System

Nakano, Keita; Iwamoto, Hiroki; Nishihara, Kenji; Meigo, Shinichiro; Sugawara, Takanori; Iwamoto, Yosuke; Takeshita, Hayato*; Maekawa, Fujio

JAEA-Research 2021-018, 41 Pages, 2022/03

JAEA-Research-2021-018.pdf:2.93MB

Neutronic analysis of beam window of the Accelerator-Driven System (ADS) proposed by Japan Atomic Energy Agency (JAEA) has been conducted using PHITS and DCHAIN-PHITS codes. We investigate gas production of hydrogen and helium isotopes in the beam window, displacement per atom of beam window material, and heat generation in the beam window. In addition, distributions of produced nuclides, heat density, and activity are derived. It was found that at the maximum 12500 appm H production, 1800 appm He production, and damage of 62.1 DPA occurred in the beam window by the ADS operation. On the other hand, the maximum heat generation in the beam window was 374 W/cm$$^3$$. In the analysis of LBE, $$^{206}$$Bi and $$^{210}$$Po were found to be the dominant nuclides in decay heat and radioactivity. Furthermore, the heat generation in the LBE by the proton beam was maximum around 5 cm downstream of the beam window, which was 945 W/cm$$^3$$.

Journal Articles

Experimental plan for displacement damage cross sections using 120-GeV protons at Fermi National Accelerator Laboratory

Iwamoto, Yosuke; Yoshida, Makoto*; Meigo, Shinichiro; Yonehara, Katsuya*; Ishida, Taku*; Nakano, Keita; Abe, Shinichiro; Iwamoto, Hiroki; Spina, T.*; Ammigan, K.*; et al.

JAEA-Conf 2021-001, p.138 - 143, 2022/03

To predict the operating lifetime of materials in high-energy radiation environments at proton accelerator facilities, Monte Carlo code are used to calculate the number of displacements per atom (dpa). However, there is no experimental data in the energy region above 30 GeV. In this presentation, we introduce our experimental plan for displacement cross sections with 120-GeV protons at Fermilab Test Beam Facility. Experiments will be performed for the US fiscal year 2022. We developed the sample assembly with four wire sample of Al, Cu, Nb and W with 250-$$mu$$m diameter and 4-cm length. The sample assembly will be maintained at around 4 K by using a cryocooler in a vacuum chamber. Then, changes in the electrical resistivity of samples will be obtained under 120-GeV proton irradiation. Recovery of the accumulated defects through isochronal annealing, which is related to the defect concentration in the sample, will also be measured after the cryogenic irradiation.

271 (Records 1-20 displayed on this page)