Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Irradiation effect of 14 MeV neutron on interlaminar shear strength of glass fiber reinforced plastics

Nishimura, Arata*; Hishinuma, Yoshimitsu*; Seo, Kazutaka*; Tanaka, Teruya*; Muroga, Takeo*; Nishijima, Shigehiro*; Katagiri, Kazumune*; Takeuchi, Takao*; Shindo, Yasuhide*; Ochiai, Kentaro; et al.

AIP Conference Proceedings 824, p.241 - 248, 2005/09

Design activity of International Thermonuclear Experimental Reactor clarifies intense neutron streaming from ports for neutral beam injectors. Energy spectrum of the streaming is very wide and 14 MeV neutron and $$gamma$$ ray are the typical radiations. Large amount of glass fiber reinforced plastics will be used in a superconducting magnet system as an electric insulation material and a support structure, for such organic material is easy to manufacture, and light and cheap. In this report, effects of 14 MeV neutron and $$gamma$$ ray irradiation on interlaminar shear strength and fracture mode are investigated using G-10CR small specimen of which configuration was proposed as a standard for evaluation of the interlaminar shear strength.

Oral presentation

Irradiation effect of D-T neutron on superconducting magnet materials for fusion

Nishimura, Arata*; Hishinuma, Yoshimitsu*; Seo, Kazutaka*; Tanaka, Teruya*; Muroga, Takeo*; Nishijima, Shigehiro*; Katagiri, Kazumune*; Takeuchi, Takao*; Shindo, Yasuhide*; Ochiai, Kentaro; et al.

no journal, , 

A fusion device which creates burning plasma will be equipped with a superconducting magnet system to provide strong magnetic field and maintain the burning plasma. The fusion device also will have plasma heating devices such as neutral beam injectors and electron cyclotron systems. Since these systems need several ports to carry in the energy into plasma, the fusion device has large ports connecting to the systems locates in outside of cryostat. Through these ports, D-T neutron will come out of the burning plasma and damage the surrounding materials. The superconducting magnets also will be irradiated by the streaming neutron. To investigate mechanisms of degradation of superconducting properties, and to construct database of irradiation effect on superconducting magnet materials, a cryogenic target system has been install in Fusion Neutronics Source (FNS) at Japan Atomic Energy Agency (JAEA). The irradiation tests with D-T neutron have been carried out three times and some irradiation effects on superconducting magnet materials are clarified. In this paper, the present status of the cryogenic target system and some irradiation test results will be summarized and presented.

2 (Records 1-2 displayed on this page)
  • 1