Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 94

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of H$$^{0}$$ particles generated by residual gas stripping in the Japan Proton Accelerator Research Complex linac

Tamura, Jun; Futatsukawa, Kenta*; Kondo, Yasuhiro; Liu, Y.*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Okabe, Kota; Yoshimoto, Masahiro

Nuclear Instruments and Methods in Physics Research A, 1049, p.168033_1 - 168033_7, 2023/04

 Times Cited Count:1 Percentile:72.91(Instruments & Instrumentation)

The Japan Proton Accelerator Research Complex (J-PARC) linac is a high-intensity accelerator in which beam loss is a critical issue. In the J-PARC linac, H$$^{-}$$ beams are accelerated to 191~MeV by a separated drift tube linac (SDTL) and subsequently to 400~MeV by an annular-ring coupled structure (ACS). Because there are more beam loss mechanisms in H$$^{-}$$ linacs than in proton linacs, it is imperative to investigate the beam loss circumstances for beam loss mitigation. Electron-stripping phenomena, which generate uncontrollable H$$^{0}$$ particles, are characteristic beam loss factors of H$$^{-}$$ linacs. To clarify the beam loss causes in the J-PARC linac, a new diagnostic line was installed in the beam transport between the SDTL and ACS. In this diagnostic line, H$$^{0}$$ particles were separated from the H$$^{-}$$ beam, and the intensity profiles of the H$$^{0}$$ particles were successfully measured by horizontally scanning a graphite plate in the range where H$$^{0}$$ particles were distributed. By examining the intensity variation of the H$$^{0}$$ particles with different residual pressure levels, we proved that half of the H$$^{0}$$ particles in the SDTL section are generated by the residual gas stripping in the nominal beam operation of the J-PARC linac.

Journal Articles

Measurement of the longitudinal bunch-shape distribution for a high-intensity negative hydrogen ion beam in the low-energy region

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Oguri, Hidetomo

Physical Review Accelerators and Beams (Internet), 26(3), p.032802_1 - 032802_12, 2023/03

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

A bunch-shape monitor (BSM) is a useful device for performing longitudinal beam tuning using the pointwise longitudinal phase distribution measured at selected points in the beam transportation. To measure the longitudinal phase distribution of a low-energy negative hydrogen (H$$^{-}$$) ion beam, highly oriented pyrolytic graphite (HOPG) was adopted for the secondary-electron-emission target to mitigate the thermal damage due to the high-intensity beam loading. The HOPG target enabled the measurement of the longitudinal phase distribution at the center of a 3-MeV H$$^{-}$$ ion beam with a high peak current of about 50 mA. The longitudinal bunch width was measured using HOPG-BSM at the test stand, which was consistent with the beam simulation. The correlation measurement between the beam transverse and longitudinal planes was demonstrated using HOPG-BSM. The longitudinal Twiss and emittance measurement with the longitudinal Q-scan method was conducted using HOPG-BSM.

Journal Articles

Evaluation of doped potassium concentrations in stacked two-Layer graphene using real-time XPS

Ogawa, Shuichi*; Tsuda, Yasutaka; Sakamoto, Tetsuya*; Okigawa, Yuki*; Masuzawa, Tomoaki*; Yoshigoe, Akitaka; Abukawa, Tadashi*; Yamada, Takatoshi*

Applied Surface Science, 605, p.154748_1 - 154748_6, 2022/12

 Times Cited Count:3 Percentile:48.5(Chemistry, Physical)

Immersion of graphene in KOH solution improves its mobility on SiO$$_{2}$$/Si wafers. This is thought to be due to electron doping by modification with K atoms, but the K atom concentration C$$_{K}$$ in the graphene has not been clarified yet. In this study, the C$$_{K}$$ was determined by XPS analysis using high-brilliance synchrotron radiation. The time evolution of C$$_{K}$$ was determined by real-time observation, and the C$$_{K}$$ before irradiation of synchrotron radiation was estimated to be 0.94%. The C 1s spectrum shifted to the low binding energy side with the desorption of K atoms. This indicates that the electron doping concentration into graphene is decreasing, and it is experimentally confirmed that K atoms inject electrons into graphene.

Journal Articles

Mesospheric ionization during substorm growth phase

Murase, Kiyoka*; Kataoka, Ryuho*; Nishiyama, Takanori*; Nishimura, Koji*; Hashimoto, Taishi*; Tanaka, Yoshimasa*; Kadokura, Akira*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Ogawa, Yasunobu*; et al.

Journal of Space Weather and Space Climate (Internet), 12, p.18_1 - 18_16, 2022/06

 Times Cited Count:1 Percentile:22.72(Astronomy & Astrophysics)

We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP event for which the most comprehensive dataset from ground-based and space-born instruments was available. The mesospheric ionization signature reached below 70 km altitude and continued for ~15 min until the substorm onset, as observed by the PANSY radar and imaging riometer at Syowa Station in the Antarctic region. We also used energetic electron flux observed by the Arase and POES 15 satellites as the input for the air-shower simulation code PHITS to quantitatively estimate the mesospheric ionization rate. Combining the cutting-edge observations and simulations, we shed new light on the space weather impact of the EEP events during geomagnetically quiet times, which is important to understand the possible link between the space environment and climate.

Journal Articles

Evaluation of gas entrainment flow rate by free surface vortex

Torikawa, Tomoaki*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Konsoryu, 36(1), p.63 - 69, 2022/03

On free surface of a sodium cooled fast reactor, gas entrainment can be caused by free surface vortices, which may result in disturbance in core power. It is important to develop an evaluation model to predict accurately entrained gas flow rate. In this study, entrained gas flow rate a simple gas entrainment experiment is conducted with focusing on effect of pressure difference between upper and lower tanks. Pressure difference between upper and lower tanks are controlled by changing gas pressure in lower tank. As a result, it is confirmed that the entrained gas flow rate increases with increasing pressure difference between upper and lower tanks. By visualization of swirling annular flow in suction pipe, it is also observed that pressure drop in suction pipe increases with increase in entrained gas flow rate, which implies that entrained gas flow rate can be predicted by evaluation model based on pressure drop in swirling annular flow region.

Journal Articles

Tumor radioresistance caused by radiation-induced changes of stem-like cell content and sub-lethal damage repair capability

Fukui, Roman*; Saga, Ryo*; Matsuya, Yusuke; Tomita, Kazuo*; Kuwahara, Yoshikazu*; Ouchi, Kentaro*; Sato, Tomoaki*; Okumura, Kazuhiko*; Date, Hiroyuki*; Fukumoto, Manabu*; et al.

Scientific Reports (Internet), 12(1), p.1056_1 - 1056_12, 2022/01

 Times Cited Count:10 Percentile:91.34(Multidisciplinary Sciences)

Alive cancer cells after fractionated irradiations with 2 Gy X-rays per day for more than 30 days show clinically relevant radioresistant. Such radioresistance is experimentally interpreted to attributed to the increment of stem-like cell content. However, only an experimental approach cannot clarify the cell responses (DNA damage and cell death induction) of cancer stem cells, so the radioresistant mechanisms remain uncertain. In addition to the conventional cell experiments using radio-resistant cell lines established after fractionated irradiations, in this study we developed a mathematical model (so called integrated microdosimetric-kinetic (IMK) model) explicitly considering cancer stem-like cell content and DNA damage responses and investigated radioresistant mechanisms acquired after fractionated irradiations. The IMK model analysis suggested that the changes of stem-like cell fraction and DNA repair efficiency play important roles of radioresisitance acquired after irradiations. Considering these into the IMK model, we successfully reproduced the experimental survival of various cell lines and various irradiation conditions. This work would contribute to not only the precise understanding of the radioresistant mechanisms induced after irradiation but also predicting curative effects with high precision.

Journal Articles

Perspectives on multiscale modelling and experiments to accelerate materials development for fusion

Gilbert, M. R.*; Arakawa, Kazuto*; Suzudo, Tomoaki; Tsuru, Tomohito; 26 of others*

Journal of Nuclear Materials, 554, p.153113_1 - 153113_31, 2021/10

 Times Cited Count:33 Percentile:90.46(Materials Science, Multidisciplinary)

Modelling will continue to do so until the first generation of fusion power plants come on line and allow long-term behaviour to be observed. In the meantime, the modelling is supported by experiments that attempt to replicate some aspects of the eventual operational conditions. In 2019, a group of leading experts met under the umbrella of the IEA to discuss the current position and ongoing challenges in modelling of fusion materials and how advanced experimental characterisation is aiding model improvement. This review draws from the discussions held during that workshop. Topics covering modelling of irradiation-induced defect production and fundamental properties, gas behaviour, clustering and segregation, defect evolution and interactions are discussed, as well as new and novel multiscale simulation approaches, and the latest efforts to link modelling to experiments through advanced observation and characterisation techniques.

Journal Articles

Bunch-size measurement of the high-intensity H$$^{-}$$ beam with 3 MeV by the bunch-shape monitor

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo

JPS Conference Proceedings (Internet), 33, p.011012_1 - 011012_6, 2021/03

The new bunch shape monitor (BSM) is required to measure the bunch size of the high-intensity H$$^{-}$$ beam with 3 MeV at the front-end section in the J-PARC linac. The carbon-nano tube wire and the graphene stick are good candidates for the target wire of the BSM, because these materials have the enough strength to detect the high-intensity beam. However, since the negative high voltage of more than a few kV should be applied to the wire in the BSM, the suppression of the discharge is the challenge to realize the new BSM. After the high-voltage test to investigate the effect of the discharge from the wire, the detection of the signal from the BSM was successful at the beam core with the peak current of 55 mA using the graphene stick. The preliminary result of the bunch-size measurement is reported in this presentation.

Journal Articles

Evaluation of the bunch-shape monitor for the high-intensity proton beam

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.251 - 253, 2020/09

A bunch-shape monitor (BSM) in the low-energy region is being developed in the J-PARC linac to accelerate the high-intensity proton beam with the low emittance. A highly-oriented pyrolytic graphite (HOPG) was introduced as the target of the BSM to mitigate the thermal loading. The stable measurement of the BSM was realized thanks to the HOPG target, while the tungsten target was broken by the thermal loading from the high-intensity beam. However, since the longitudinal distribution measured with the BSM using the HOPG target was wider than the expected one, the improvement of tuning parameters is necessary for the BSM. The BSM consists of an electron multiplier, a bending magnet, and a radio-frequency deflector, which should be tuned appropriately. Behavior of these components were investigated and tuned. The longitudinal distribution measured with the BSM after the tuning was consistent with the expected one.

Journal Articles

${it In situ}$ WB-STEM observation of dislocation loop behavior in reactor pressure vessel steel during post-irradiation annealing

Du, Y.*; Yoshida, Kenta*; Shimada, Yusuke*; Toyama, Takeshi*; Inoue, Koji*; Arakawa, Kazuto*; Suzudo, Tomoaki; Milan, K. J.*; Gerard, R.*; Onuki, Somei*; et al.

Materialia, 12, p.100778_1 - 100778_10, 2020/08

In order to ensure the integrity of the reactor pressure vessel in the long term, it is necessary to understand the effects of irradiation on the materials. In this study, irradiation-induced dislocation loops were observed in neutron-irradiated reactor pressure vessel specimens during annealing using our newly developed WB-STEM. It was confirmed that the proportion of $$<100>$$ loops increased with increasing annealing temperature. We also succeeded in observing the phenomenon that two $$frac{1}{2}$$$$<111>$$ loops collide into a $$<100>$$ loop. Moreover, a phenomenon in which dislocation loops decorate dislocations was also observed, and the mechanism was successfully explained by molecular dynamics simulation.

Journal Articles

Transient ionization of the mesosphere during auroral breakup; Arase satellite and ground-based conjugate observations at Syowa Station

Kataoka, Ryuho*; Nishiyama, Takanori*; Tanaka, Yoshimasa*; Kadokura, Akira*; Uchida, Herbert Akihito*; Ebihara, Yusuke*; Ejiri, Mitsumu*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Sato, Kaoru*; et al.

Earth, Planets and Space (Internet), 71(1), p.9_1 - 9_10, 2019/12

 Times Cited Count:8 Percentile:40.25(Geosciences, Multidisciplinary)

Transient ionization of the mesosphere was detected at around 65 km altitude during the isolated auroral expansion occurred at 2221-2226 UT on June 30, 2017. A general-purpose Monte Carlo particle transport code PHITS suggested that significant ionization is possible in the middle atmosphere due to auroral X-rays from the auroral electrons of $$<$$10 keV.

Journal Articles

Upgrade of the 3-MeV linac for testing of accelerator components at J-PARC

Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.

Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12

 Times Cited Count:1 Percentile:52.28(Physics, Particles & Fields)

We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Longitudinal measurements and beam tuning in the J-PARC linac MEBT1

Otani, Masashi*; Futatsukawa, Kenta*; Miyao, Tomoaki*; Liu, Y.*; Hirano, Koichiro; Kondo, Yasuhiro; Miura, Akihiko; Oguri, Hidetomo

Journal of Physics; Conference Series, 1350, p.012078_1 - 012078_5, 2019/12

 Times Cited Count:1 Percentile:52.28(Physics, Particles & Fields)

The Japan Proton Accelerator Research Complex (J-PARC) linac is operated with design peak current of 50 mA from 2018. For operation with such a high beam current, itis important to understand transverse and longitudinal beam properties especially in low-velocity region. A medium energy beam transport (MEBT1) line between the 3-MeV radio-frequency quadrupole linac (RFQ) and the 50-MeV drift-tube linac (DTL) is a 3-m-long transport line to match the beam to the DTL and produce a macro pulse configuration for a 3-GeV rapid-cycling synchrotron (RCS). In this paper, recent measurements and beam tuning results in MEBT1 will be presented.

Journal Articles

Bunch shape monitor for the high-intensity H$$^{-}$$ beam with 3 MeV using the carbon material

Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Moriya, Katsuhiro; Nemoto, Yasuo*; Oguri, Hidetomo

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.51 - 54, 2019/07

The longitudinal measurement and tuning at the beam transport after the RFQ are important to reduce the beam loss and the emittance growth in the J-PARC linac, when the high-intensity H$$^{-}$$ beam of more than 60 mA is supplied. The new bunch shape monitor (BSM) using the carbon-nanotube (CNT) wire is necessary to measure the bunch shape of the high-intensity H$$^{-}$$ beam with 3 MeV, because the CNT wire has a high-temperature tolerance and a small energy deposit. However, when the high voltage was applied to the CNT wire to extract the secondary electron derived, the discharge prevents the power supply from applying the voltage. Therefore, the discharge should be suppressed to measure the bunch shape with stability. Considering the characteristics of the CNT as the emitter, when the length of the CNT wire was short, the high voltage of -10 kV was applied to the CNT wire. The current status and future prospects of the BSM using the CNT wire are reported in this presentation.

Journal Articles

Development of the bunch shape monitor using the carbon-nano tube wire

Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Moriya, Katsuhiro; Oguri, Hidetomo; Futatsukawa, Kenta*; Miyao, Tomoaki*; Otani, Masashi*; Kosaka, Satoshi*; et al.

Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2543 - 2546, 2019/06

A bunch shape monitor (BSM) is one of the important instruments to measure the longitudinal phase space distribution. For example in the J-PARC linac, three BSMs using the tungsten wire are installed at the ACS section to measure the bunch shapes between the accelerating cavities. However, this conventional BSM is hard to measure the bunch shape of H$$^{-}$$ beam with 3 MeV at the beam transport between the RFQ and DTL sections, because the wire is broken around the center region of the beam. The new BSM using the carbon-nano-tube (CNT) wire is being developed to be able to measure the bunch shape of the H$$^{-}$$ beam with 3 MeV. The careful attention should be paid to apply the high voltage of $$-$$10 kV to the CNT wire. The several measures are taken to suppress the discharge from the wire and operate the CNT-BSM. This presentation reports the current status of the development and future prospective for the CNT-BSM.

Journal Articles

Analysis of interlocked events based on beam instrumentation data at J-PARC Linac and RCS

Hayashi, Naoki; Hatakeyama, Shuichiro; Miura, Akihiko; Yoshimoto, Masahiro; Futatsukawa, Kenta*; Miyao, Tomoaki*

Proceedings of 7th International Beam Instrumentation Conference (IBIC 2018) (Internet), p.219 - 223, 2019/01

J-PARC is a multi-purpose facility. Accelerator stability is the one of important issues for users of this facility. To realize stable operation, we must collect data on interlocked events and analyze these data to determine the reasons for the occurrence of such events. In J-PARC Linac, data of interlocked events have been recorded using several some beam loss monitors and current monitors, and these data have been are analyzed and classified. In J-PARC RCS, new instrumentation is being introduced to obtain beam position. We discuss the present status and future plans related to this subject.

Journal Articles

Study of a tuner for a high-accuracy bunch shape monitor

Moriya, Katsuhiro; Kawane, Yusuke*; Miura, Akihiko; Futatsukawa, Kenta*; Miyao, Tomoaki*

Journal of Physics; Conference Series, 1067, p.072009_1 - 072009_3, 2018/09

BB2017-2165.pdf:0.7MB

 Times Cited Count:0 Percentile:0.11(Physics, Particles & Fields)

no abstracts in English

Journal Articles

Tensile fracture test of metallic wire of beam profile monitors

Miura, Akihiko; Kawane, Yusuke*; Moriya, Katsuhiro; Futatsukawa, Kenta*; Miyao, Tomoaki*; Fukuoka, Shota*

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.2183 - 2186, 2018/06

In order to mitigate the beam loss during a beam transportation in the high-brilliant accelerator facilities, wire-based profile monitors are used to measure by both transverse and longitudinal beam profiles using wire-scanner monitors and bunch-shape monitors for the tuning of quadrupole magnets and buncher cavities. Signals are generated due to the direct interaction between a metallic wire and beam. We have used the tungsten wire as a high melting-point material by estimation of heat loading during the impact of beam particles. In addition, a spring is applied for the relaxing a flexure under wire's own weight. A tensile fracture test is conducted by supplying an electrical current as a simulated beam loading. As the results, we obtained the relation between the thermal limit to fracture and tension loading of tungsten wire.

Journal Articles

Status of JMTR decommissioning plan formulation

Otsuka, kaoru; Hanakawa, Hiroki; Nagata, Hiroshi; Omori, Takazumi; Takeuchi, Tomoaki; Tsuchiya, Kunihiko

UTNL-R-0496, p.13_1 - 13_11, 2018/03

no abstracts in English

JAEA Reports

Degradation behavior of optical components by gamma irradiation (Contract research)

Takeuchi, Tomoaki; Shibata, Hiroshi; Hanakawa, Hiroki; Uehara, Toshiaki*; Ueno, Shunji*; Tsuchiya, Kunihiko; Kumahara, Hajime*; Shibagaki, Taro*; Komanome, Hirohisa*

JAEA-Technology 2017-026, 26 Pages, 2018/02

JAEA-Technology-2017-026.pdf:4.0MB

Under severe accidents, high-integrity transmission techniques are necessary so as to monitor the situation of the nuclear power plant. In this study, effects of gamma irradiation up to 10$$^{6}$$Gy on properties of optical devices were evaluated toward the development of a radiation-resistant in-water wireless transmission system using visible light. After the irradiation, for the LEDs, the total luminous flux decreased and the browning of resin lenses occurred. Meanwhile, the current-voltage characteristics hardly changed. For the PDs, the light sensitivity decreased and the browning of resin window occurred. The dark currents of PDs did not become large enough to adversely affect transmission. These results indicated that both the decreases of the total luminous flux of the LEDs and the light sensitivity of the PDs were mainly caused by not the degradation of the semiconductor parts but the browning of the resin parts by the irradiation. In addition, basic decrease behaviors of light transmission of several different types of glasses by gamma irradiation were also obtained so as to select the suitable optical windows and filters for the developing radiation-resistant in-water wireless transmission system.

94 (Records 1-20 displayed on this page)