Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 40

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of the spatial polarization distribution of circularly polarized gamma rays produced by inverse Compton scattering

Taira, Yoshitaka*; Endo, Shunsuke; Kawamura, Shiori*; Nambu, Taro*; Okuizumi, Mao*; Shizuma, Toshiyuki*; Omer, M.; Zen, H.*; Okano, Yasuaki*; Kitaguchi, Masaaki*

Physical Review A, 107(6), p.063503_1 - 063503_10, 2023/06

 Times Cited Count:0 Percentile:0.01(Optics)

no abstracts in English

Journal Articles

Angular distribution of $$gamma$$ rays from a neutron-induced $$p$$-wave resonance of $$^{132}$$Xe

Okudaira, Takuya*; Tani, Yuika*; Endo, Shunsuke; Doskow, J.*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kameda, Kento*; Kimura, Atsushi; Kitaguchi, Masaaki*; Luxnat, M.*; et al.

Physical Review C, 107(5), p.054602_1 - 054602_7, 2023/05

 Times Cited Count:0 Percentile:70.47(Physics, Nuclear)

no abstracts in English

Journal Articles

Measurement of the transverse asymmetry of $$gamma$$ rays in the $$^{117}$$Sn($$n,gamma$$)$$^{118}$$Sn reaction

Endo, Shunsuke; Okudaira, Takuya*; Abe, Ryota*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Oku, Takayuki; Sakai, Kenji; Shima, Tatsushi*; et al.

Physical Review C, 106(6), p.064601_1 - 064601_7, 2022/12

 Times Cited Count:1 Percentile:54.36(Physics, Nuclear)

no abstracts in English

Journal Articles

Evaluation of analyzing power of gamma-ray polarimeter

Endo, Shunsuke; Shizuma, Toshiyuki*; Zen, H.*; Taira, Yoshitaka*; Omer, M.; Kawamura, Shiori*; Abe, Ryota*; Okudaira, Takuya*; Kitaguchi, Masaaki*; Shimizu, Hirohiko*

UVSOR-49, P. 38, 2022/08

Journal Articles

Angular distribution of $$gamma$$ rays from the $$p$$-wave resonance of $$^{118}$$Sn

Koga, Jun*; Takada, Shusuke*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Niinomi, Yudai*; Okudaira, Takuya*; et al.

Physical Review C, 105(5), p.054615_1 - 054615_5, 2022/05

 Times Cited Count:2 Percentile:68.81(Physics, Nuclear)

no abstracts in English

Journal Articles

Energy-dependent angular distribution of individual $$gamma$$ rays in the $$^{139}$$La($$n, gamma$$)$$^{140}$$La$$^{ast}$$ reaction

Okudaira, Takuya*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; Niinomi, Yudai*; Sakai, Kenji; et al.

Physical Review C, 104(1), p.014601_1 - 014601_6, 2021/07

 Times Cited Count:3 Percentile:58.42(Physics, Nuclear)

Journal Articles

Development and application of a $$^3$$He neutron spin filter at J-PARC

Okudaira, Takuya; Oku, Takayuki; Ino, Takashi*; Hayashida, Hirotoshi*; Kira, Hiroshi*; Sakai, Kenji; Hiroi, Kosuke; Takahashi, Shingo*; Aizawa, Kazuya; Endo, Hitoshi*; et al.

Nuclear Instruments and Methods in Physics Research A, 977, p.164301_1 - 164301_8, 2020/10

 Times Cited Count:9 Percentile:79.84(Instruments & Instrumentation)

Journal Articles

Transverse asymmetry of $$gamma$$ rays from neutron-induced compound states of $$^{140}$$La

Yamamoto, Tomoki*; Okudaira, Takuya; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.

Physical Review C, 101(6), p.064624_1 - 064624_8, 2020/06

 Times Cited Count:8 Percentile:74.44(Physics, Nuclear)

Journal Articles

An Experimental setup for creating and imaging $$^{4}$$He$$_{2}$$$$^{ast}$$ excimer cluster tracers in superfluid helium-4 via neutron-$$^{3}$$He absorption reaction

Sonnenschein, V.*; Tsuji, Yoshiyuki*; Kokuryu, Shoma*; Kubo, Wataru*; Suzuki, So*; Tomita, Hideki*; Kiyanagi, Yoshiaki*; Iguchi, Tetsuo*; Matsushita, Taku*; Wada, Nobuo*; et al.

Review of Scientific Instruments, 91(3), p.033318_1 - 033318_12, 2020/03

 Times Cited Count:0 Percentile:0(Instruments & Instrumentation)

Journal Articles

Measurement of the angular distribution of $$gamma$$-rays after neutron capture by $$^{139}$$La for a T-violation search

Okudaira, Takuya; Shimizu, Hirohiko*; Kitaguchi, Masaaki*; Hirota, Katsuya*; Haddock, C. C.*; Ito, Ikuya*; Yamamoto, Tomoki*; Endo, Shunsuke*; Ishizaki, Kohei*; Sato, Takumi*; et al.

EPJ Web of Conferences, 219, p.09001_1 - 09001_6, 2019/12

Parity violating effects enhanced by up to 10$$^6$$ times have been observed in several neutron induced compound nuclei. There is a theoretical prediction that time reversal (T) violating effects can also be enhanced in these nuclei implying that T-violation can be searched for by making very sensitive measurements. However, the enhancement factor has not yet been measured in all nuclei. The angular distribution of the (n,$$gamma$$) reaction was measured with $$^{139}$$La by using a germanium detector assembly at J-PARC, and the enhancement factor was obtained. From the result, the measurement time to achieve the most sensitive T-violation search was estimated as 1.4 days, and a 40% polarized $$^{139}$$La target and a 70% polarized $$^3$$He spin filter whose thickness is 70 atm$$cdot$$cm are needed. Therefore high quality $$^3$$He spin filter is developed in JAEA. The measurement result of the (n,$$gamma$$) reaction at J-PARC and the development status of the $$^3$$He spin filter will be presented.

Journal Articles

Development of the neutron polarizer for the T-violation search using compound nuclei

Okudaira, Takuya; Oku, Takayuki; Sakai, Kenji; Ino, Takashi*; Hayashida, Hirotoshi*; Hiroi, Kosuke; Shinohara, Takenao; Kakurai, Kazuhisa*; Aizawa, Kazuya; Shimizu, Hirohiko*; et al.

Proceedings of Science (Internet), 356, p.029_1 - 029_5, 2019/12

The technology development section carries out the development of the neutron polarization device: $$^{3}$$He Spin Filter. It is often used for the fundamental physics region. In order to explain the matter-dominated universe, a time reversal violation is necessary and searches for new physics are conducted in the world. The T-violation search using a polarized neutron beam is planned at J-PARC. A large $$^{3}$$He spin filter is needed to polarize high energy neutrons for the experiment and is developed in JAEA. Recently, we developed the accurate measurement system to evaluate the polarization of $$^{3}$$He and a vacuum system to make the $$^{3}$$He spin filter, and large $$^{3}$$He spin filters for epi-thermal neutron was made using the system. The current status of the development of the $$^{3}$$He spin filter will be talked.

Journal Articles

Generation of $$^{4}$$He$$_2^{*}$$ clusters via neutron-$$^{3}$$He absorption reaction toward visualization of full velocity field in quantum turbulence

Matsushita, Taku*; Sonnenschein, V.*; Guo, W.*; Hayashida, Hirotoshi*; Hiroi, Kosuke; Hirota, Katsuya*; Iguchi, Tetsuo*; Ito, Daisuke*; Kitaguchi, Masaaki*; Kiyanagi, Yoshiaki*; et al.

Journal of Low Temperature Physics, 196(1-2), p.275 - 282, 2019/07

Journal Articles

New precise measurements of muonium hyperfine structure at J-PARC MUSE

Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.

EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01

 Times Cited Count:13 Percentile:99.28

Journal Articles

Angular distribution of $$gamma$$ rays from neutron-induced compound states of $$^{140}$$La

Okudaira, Takuya*; Takada, Shusuke*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; Nagamoto, Kosuke*; Nakao, Taro*; Okada, Anju*; Sakai, Kenji; et al.

Physical Review C, 97(3), p.034622_1 - 034622_15, 2018/03

 Times Cited Count:11 Percentile:71.44(Physics, Nuclear)

Journal Articles

Characterization of germanium detectors for the measurement of the angular distribution of prompt $$gamma$$-rays at the ANNRI in the MLF of the J-PARC

Takada, Shusuke*; Okudaira, Takuya*; Goto, Fumiya*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; Nakao, Taro*; Sakai, Kenji; Shimizu, Hirohiko*; et al.

Journal of Instrumentation (Internet), 13(2), p.P02018_1 - P02018_21, 2018/02

 Times Cited Count:6 Percentile:31.36(Instruments & Instrumentation)

Journal Articles

Development of two-dimensional multiwire-type neutron detector system with individual line readout and optical signal transmission

To, Kentaro; Nakamura, Tatsuya; Sakasai, Kaoru; Soyama, Kazuhiko; Hino, Masahiro*; Kitaguchi, Masaaki*; Yamagishi, Hideshi*

Nuclear Instruments and Methods in Physics Research A, 726, p.169 - 174, 2013/10

 Times Cited Count:9 Percentile:57.76(Instruments & Instrumentation)

A multiwire-type two-dimensional neutron detector system with a sensitive area of 128 $$times$$ 128 mm$$^{2}$$ is developed for use in the Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex. The system can achieve a short response time and high spatial resolution using the individual line readout method. Optical devices have been incorporated in the system for long-distance signal transmission and insulation between a detector head in the neutron shielding and signal processing circuits in the data acquisition room. The detector system exhibits a pulse-pair resolution of 1 $$mu$$s, an average spatial resolution of less than 2 mm full width at half-maximum in the sensitive region, and a two-dimensional homogeneity of 8.3% in all pixels.

Journal Articles

A Beam divergence correction mirror for neutron resonance spin echo

Maruyama, Ryuji; Hino, Masahiro*; Hayashida, Hirotoshi; Kitaguchi, Masaaki*; Achiwa, Norio*; Yamazaki, Dai; Ebisawa, Toru*; Soyama, Kazuhiko

Physica B; Condensed Matter, 404(17), p.2594 - 2599, 2009/09

 Times Cited Count:3 Percentile:16.88(Physics, Condensed Matter)

Neutron resonance spin echo (NRSE) is one of the most useful techniques for quasi-elastic scattering with high energy resolution. The path length variation due to the beam divergence has to be corrected in high resolution NRSE measurement because it gives the limit in the energy resolution. A neutron focusing technique using neutron supermirrors is effective to overcome this problem. When a cylindrical shaped neutron supermirror placed in the center of the flight path with a pair of RSFs has the object and the image plane corresponding to the each coil plane of the first and the second RSF, the path length difference can be corrected for the neutron beam with large divergent angle, which leads to the realization of high intensity as well as high resolution in NRSE measurement. In this study, the correction method of the beam divergence with a cylindrical shaped supermirror and its experimental results are discussed.

Journal Articles

Design of neutron beamline for fundamental physics at J-PARC BL05

Mishima, Kenji*; Ino, Takashi*; Sakai, Kenji; Shinohara, Takenao; Hirota, Katsuya*; Ikeda, Kazuaki*; Sato, Hiromi*; Otake, Yoshie*; Omori, Hitoshi*; Muto, Suguru*; et al.

Nuclear Instruments and Methods in Physics Research A, 600, p.342 - 345, 2009/02

 Times Cited Count:27 Percentile:85.1(Instruments & Instrumentation)

A new beamline for a fundamental physics experiment is under construction at BL05 port in the Materials and Life Science Facility (MLF) at Japan Proton Accelerator Research Complex (J-PARC), this beamline is designed using novel techniques of neutron optics and it is termed "Neutron Optics and Physics". The beam from the moderator is deflected by multi-channel supermirrors and split into three branches for individual experiments. In this study, we have optimized the design of the beam optics and shields using the Monte Carlo simulation package PHITS. The neutron fluxes of beams are expected to be $$9.2 times 10^5/$$cm$$^2/mu$$str$$/$$s$$/$$MW, $$1.2 times 10^9/$$cm$$^2/$$s$$/$$MW, $$4.0 times 10^8/$$cm$$^2/$$s$$/$$MW, with polarization of 99.8%.

Oral presentation

A Beam divergence correction mirror for neutron resonance spin echo

Maruyama, Ryuji; Hino, Masahiro*; Hayashida, Hirotoshi; Kitaguchi, Masaaki*; Yamazaki, Dai; Ebisawa, Toru*; Soyama, Kazuhiko

no journal, , 

Neutron resonance spin echo (NRSE) is one of the most useful techniques for quasi-elastic scattering with high energy resolution. The path length variation due to the beam divergence has to be corrected in high resolution NRSE measurement because it gives the limit in the energy resolution. A neutron focusing technique using neutron supermirrors is effective to overcome this problem. When a cylindrical shaped neutron supermirror placed in the center of the flight path with a pair of RSFs has the object and the image plane corresponding to the each coil plane of the first and the second RSF, the path length difference can be corrected for the neutron beam with large divergent angle, which leads to the realization of high intensity as well as high resolution in NRSE measurement. In this study, the correction method of the beam divergence with a cylindrical shaped supermirror and its experimental results are discussed.

Oral presentation

Current status and future plan of a $$^{3}$$He spin filter development

Oku, Takayuki; Sakai, Kenji; Hiroi, Kosuke; Watanabe, Masao; Shinohara, Takenao; Aizawa, Kazuya; Kakurai, Kazuhisa; Kira, Hiroshi*; Hayashida, Hirotoshi*; Kiriyama, Koji*; et al.

no journal, , 

We have been developing a $$^{3}$$He neutron spin filter for applicaion at J-PARC MLF. The $$^{3}$$He neutron spin filter is avairable for neutrons in a wide energy range, and is also effective for a divergent neutron beam. Therefore, it is very useful in the neutron scattering experiment. So far, we have devleoped a compact laser optics with a volume holographic grating (VHG) elements, and have constructed an on-beam SEOP based $$^{3}$$He neutron spin filter. The olarization analysis tests were performed with the $$^{3}$$He neutron spin filter at several neutron beamlines for the sans, reflectivity and neutron imaging experiments. To extend the application range of the $$^{3}$$He neutron spin filter at J-PARC MLF, we plan to develop larger saize cells, higher power laser for the SEOP, and prepare working area for the filter inside the MLF experimental hall.

40 (Records 1-20 displayed on this page)