Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Microstructure investigation on SiC by nano-infiltration transient eutectic process after triple ion beam bombardment

Ozawa, Kazumi; Koyanagi, Takaaki*; Taguchi, Tomitsugu; Nozawa, Takashi; Tanigawa, Hiroyasu; Kondo, Sosuke*; Hinoki, Tatsuya*

no journal, , 

A SiC/SiC composite is a promising candidate functional/structural material for fusion DEMO reactor. To examine the effects of transmuted H mainly on microstructural cavity formation, the monolithic NITE-SiC with 6wt% Y$$_{2}$$O$$_{3}$$-Al$$_{2}$$O$$_{3}$$ sintering additive system were ion-irradiated to 10 dpa at 1000$$^{circ}$$C nominally with 130 appmHe/dpa, and 40 or 400 appmH/dpa, respectively. In SiC grains, tiny cavities with 2 nm formed densely. However, it is revealed that H could not remarkably impact on cavity formation (size, density) in the condition studied. The influence of cavities formed along SiC-YAG grain boundary (GB) on cavity swelling seems to be also small, possibly attributed to its quite low density, even though the cavity size formed is three to five times larger than the size in CVI-SiC matrix in the same irradiation condition. Additional investigation of the microstructural evolution in YAG grain and SiC-YAG GB is a future plan.

Oral presentation

Effects of transmuted hydrogen on microstructure of SiC by nano-infiltration transient eutectic process after triple ion beam irradiation

Ozawa, Kazumi; Koyanagi, Takaaki*; Taguchi, Tomitsugu; Nozawa, Takashi; Tanigawa, Hiroyasu; Kondo, Sosuke*; Hinoki, Tatsuya*

no journal, , 

no abstracts in English

Oral presentation

Changes of microstructure and mechanical properties of Hi-Nicalon Type-S SiC composites irradiated to 100 dpa

Ozawa, Kazumi; Koyanagi, Takaaki*; Nozawa, Takashi; Kato, Yutai*; Kondo, Sosuke*; Tanigawa, Hiroyasu; Snead, L. L.*

no journal, , 

A silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a promising candidate material for an advanced fusion DEMO blanket. High-dose irradiation experiments were performed with our special focuses on understanding; (1) integrity of the Hi-Nicalon Type-S (HNLS) composites, (2) functionality of thin pyrocarbon (PyC) /SiC multilayer, and (3) clarifying the mechanism underlying degradation, as feedback to R&D on SiC/SiC composites. The materials used in this study were plain-weave HNLS composites produced via the chemical vapor infiltration process. Neutron irradiation was conducted in the HFIR at ORNL. The peak neutron fluence was ~1.0$$times$$10$$^{26}$$ n/m$$^{2}$$ (E $$>$$ 0.1 MeV, equivalent to ~100 dpa) at nominal irradiation temperatures of 300, 500, and 800$$^{circ}$$C. Results of post irradiation experiments including 1/4-four-point flexural tests, SEM, and TEM observation were reported.

Oral presentation

Mechanical properties and microstructures of nuclear-grade SiC/SiC composites after high dose irradiation

Ozawa, Kazumi; Koyanagi, Takaaki*; Nozawa, Takashi; Kato, Yutai*; Kondo, Sosuke*; Tanigawa, Hiroyasu; Snead, L. L.*

no journal, , 

A silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a promising candidate material for an advanced fusion DEMO blanket because of the excellent thermo-mechanical / -chemical properties and irradiation tolerance of SiC itself. The irradiation response of highly-crystalline and near-stoichiometric SiC fiber has been assumed to be the same as that of high purity monolithic $$beta$$-SiC. Unfortunately, based on recent data this assumption appears not to be correct. This study mainly aims to investigate mechanical and microstructural changes of the SiC/SiC composite after neutron irradiation to higher dose. In the post neutron irradiation experiments to 100 dpa, ~50% degradation of proportional limit stress and ultimate flexural strength was observed for the composite irradiated at 629$$^{circ}$$C, while the one irradiated at 319$$^{circ}$$C exhibited brittle behavior. In the ion-experiment results, shrinkage of the HNLS fiber was observed for specimens irradiated at 300 and 600$$^{circ}$$C to 100 dpa. The FE-TEM results, EELS analysis and previous our works suggest that the shrinkage would be responsible for the transport of excess carbon atoms from intergranular phase into SiC grains.

4 (Records 1-4 displayed on this page)
  • 1