Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of single-event upsets in 65-nm SRAMs under irradiation of spallation neutrons at J-PARC MLF

Kuroda, Junya*; Manabe, Seiya*; Watanabe, Yukinobu*; Ito, Kojiro*; Liao, W.*; Hashimoto, Masanori*; Abe, Shinichiro; Harada, Masahide; Oikawa, Kenichi; Miyake, Yasuhiro*

IEEE Transactions on Nuclear Science, 67(7), p.1599 - 1605, 2020/07

 Times Cited Count:4 Percentile:45.45(Engineering, Electrical & Electronic)

Soft errors induced by terrestrial radiation in semiconductor devices have been of concern from the viewpoint of their reliability. Generally, to evaluate the soft error rates (SERs), neutron irradiation tests are performed at neutron facility. We have performed SER measurement for the 65-nm bulk SRAM and the FDSOI SRAM at RCNP in Osaka University and CYRIC in Tohoku University. In this study, we performed SER measurement for the same devices at BL10 in J-PARC MLF. The increasing rate of SER by reducing the supply voltage at J-PARC BL10 is larger than those obtained at RCNP and CYRIC. From PHITS simulation, the cause of this difference can be explained by the influence of the protons generated by neutron elastic scattering with hydrogen atoms in the package resin.

Journal Articles

Impact of hydrided and non-hydrided materials near transistors on neutron-induced single event upsets

Abe, Shinichiro; Sato, Tatsuhiko; Kuroda, Junya*; Manabe, Seiya*; Watanabe, Yukinobu*; Liao, W.*; Ito, Kojiro*; Hashimoto, Masanori*; Harada, Masahide; Oikawa, Kenichi; et al.

Proceedings of IEEE International Reliability Physics Symposium (IRPS 2020) (Internet), 6 Pages, 2020/04

 Times Cited Count:2 Percentile:64.23(Engineering, Electrical & Electronic)

Single event upsets (SEUs) caused by neutrons have been recognized as a serious reliability problem for microelectronic devices on the ground level. In our previous work, it was found that hydride placed in front of the memory chip has considerably impact on SEU cross sections because H ions generated via elastic scattering of neutrons with hydrogen atoms are only emitted in a forward direction. In this study, the effect of components neighboring transistors on neutron-induced SEUs was investigated for 65-nm bulk SRAMs by using PHITS. It was found that the shape of the SEU cross section around few MeV comes from the thickness and the position of components placed in front of transistors when that components do not contains hydrogen atoms. By considering components adjoin memory cells in the test board used in the simulation, measured data at J-PARC BL10 were reproduced well. In addition, it was found that the effect of components neighboring transistors on neutron-induced SERs does not negligible in terrestrial environment.

Journal Articles

Electronic structure and magnetic properties of the half-metallic ferrimagnet Mn$$_{2}$$VAl probed by soft X-ray spectroscopies

Nagai, Kodai*; Fujiwara, Hidenori*; Aratani, Hidekazu*; Fujioka, Shuhei*; Yomosa, Hiroshi*; Nakatani, Yasuhiro*; Kiss, Takayuki*; Sekiyama, Akira*; Kuroda, Fumiaki*; Fujii, Hitoshi*; et al.

Physical Review B, 97(3), p.035143_1 - 035143_8, 2018/01

AA2017-0644.pdf:1.01MB

 Times Cited Count:21 Percentile:70.17(Materials Science, Multidisciplinary)

We have studied the electronic structure of ferrimagnetic Mn$$_{2}$$VAl single crystals by means of soft X-ray absorption spectroscopy (XAS), X-ray absorption magnetic circular dichroism (XMCD), and resonant soft X-ray inelastic scattering (RIXS). We have successfully observed the XMCD signals for all the constituent elements. The Mn L$$_{2,3}$$ XAS and XMCD spectra are reproduced by spectral simulations based on density-functional theory, indicating the itinerant character of the Mn 3$$d$$ states. On the other hand, the V 3$$d$$ electrons are rather localized since the ionic model can qualitatively explain the V L$$_{2,3}$$ XAS and XMCD spectra. This picture is consistent with local $$dd$$ excitations revealed by the V L$$_{3}$$ RIXS.

Journal Articles

Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

Oguri, Shugo*; Kuroda, Yasuhiro*; Kato, Yo*; Nakata, Ryoko*; Inoue, Yoshizumi*; Ito, Chikara; Minowa, Makoto*

Nuclear Instruments and Methods in Physics Research A, 757, p.33 - 39, 2014/09

 Times Cited Count:42 Percentile:95.71(Instruments & Instrumentation)

We developed a segmented reactor antineutrino detector made of plastic scintillators for the nuclear safeguard application and demonstrate almost unmanned field operation at a commercial power plant reactor. We observed the difference of the reactor antineutrino flux with the reactor ON and OFF above the ground outside the reactor building.

Journal Articles

A Mobile antineutrino detector with plastic scintillators

Kuroda, Yasuhiro*; Oguri, Shugo*; Kato, Yo*; Nakata, Ryoko*; Inoue, Yoshizumi*; Ito, Chikara; Minowa, Makoto*

Nuclear Instruments and Methods in Physics Research A, 690, p.41 - 47, 2012/10

 Times Cited Count:36 Percentile:91.73(Instruments & Instrumentation)

We propose a new type segmented antineutrino detector made of plastic scintillators for the nuclear safeguard application. A small prototype was built and tested to measure background events. A satisfactory unmanned field operation of the detector system was demonstrated. Besides, a detailed Monte Carlo simulation code was developed to estimate the antineutrino detection efficiency of the detector.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2006

Nishio, Kazuhisa; Matsuoka, Toshiyuki; Mikake, Shinichiro; Tsuruta, Tadahiko; Amano, Kenji; Oyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Yoshida, Haruo*; et al.

JAEA-Review 2009-001, 110 Pages, 2009/03

JAEA-Review-2009-001.pdf:49.84MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2006 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2005

Nishio, Kazuhisa; Matsuoka, Toshiyuki; Mikake, Shinichiro; Tsuruta, Tadahiko; Amano, Kenji; Oyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Yoshida, Haruo*; et al.

JAEA-Review 2008-073, 99 Pages, 2009/03

JAEA-Review-2008-073-1.pdf:37.33MB
JAEA-Review-2008-073-2.pdf:37.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2005 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Final report on the surface-based investigation (phase I) at the Mizunami Underground Laboratory project

Saegusa, Hiromitsu; Seno, Yasuhiro; Nakama, Shigeo; Tsuruta, Tadahiko; Iwatsuki, Teruki; Amano, Kenji; Takeuchi, Ryuji; Matsuoka, Toshiyuki; Onoe, Hironori; Mizuno, Takashi; et al.

JAEA-Research 2007-043, 337 Pages, 2007/03

JAEA-Research-2007-043.pdf:28.14MB

The Mizunami Underground Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan. This report summarizes the results of the Surface-based Investigation Phase, identifies future issues and provides direction for research to be conducted during Construction Phase and Operation Phase. The results compiled in this report will be utilized for the technical knowledge base on geological disposal of HLW, and can be used to enhance the technical basis for waste disposal in general and for development of government regulations.

Journal Articles

Effects of defect morphology on the properties of vortex system in Bi$$_{2}$$Sr$$_{2}$$CaCu$$_{2}$$O$$_{8+delta}$$ irradiated with GeV heavy ions

Kuroda, N.; Ishikawa, Norito; Chimi, Yasuhiro; Iwase, Akihiro; Ikeda, Hiroshi*; Yoshizaki, Ryozo*; Kambara, Tadashi*

Physical Review B, 63(22), p.224502_1 - 224502_5, 2001/06

 Times Cited Count:9 Percentile:48.04(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Radiation annealing induced by electronic excitation in iron

Chimi, Yasuhiro; Iwase, Akihiro; Ishikawa, Norito; Kuroda, N.; Kambara, Tadashi*

Nuclear Instruments and Methods in Physics Research B, 164-165, p.408 - 414, 2000/04

 Times Cited Count:7 Percentile:47.27(Instruments & Instrumentation)

no abstracts in English

Journal Articles

Ion-velocity effects on defect production in high-T$$_{c}$$ superconductors and metals irradiated with swift heavy ions

Ishikawa, Norito; Chimi, Yasuhiro; Kuroda, N.*; Iwase, Akihiro; Kambara, Tadashi*

Phys. Scr., T80(B), p.559 - 561, 1999/00

 Times Cited Count:3 Percentile:33.44(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Vortex dynamics in Bi$$_{2}$$(Sr,La)$$_{2}$$CuO$$_{6+delta}$$ and Bi$$_{2}$$Sr$$_{2}$$CaCu$$_{2}$$O$$_{8+delta}$$ single crystals with columnar defects

Kuroda, N.; Ishikawa, Norito; Chimi, Yasuhiro; Iwase, Akihiro; Okayasu, Satoru; Ikeda, Hiroshi*; Yoshizaki, Ryozo*; Kambara, Tadashi*

Physica C, 321(3-4), p.143 - 150, 1999/00

 Times Cited Count:11 Percentile:54.6(Physics, Applied)

no abstracts in English

Oral presentation

Current status of an extreme environment single crystal neutron diffractometer SENJU at J-PARC

Ohara, Takashi; Kiyanagi, Ryoji; Kaneko, Koji; Tamura, Itaru; Nakao, Akiko*; Hanashima, Takayasu*; Munakata, Koji*; Moyoshi, Taketo*; Kuroda, Tetsuya*; Oikawa, Kenichi; et al.

no journal, , 

Oral presentation

Current status of extreme environment single crystal neutron diffractometer SENJU, and latest news from JRR-3

Kaneko, Koji; Ohara, Takashi; Kiyanagi, Ryoji; Kawasaki, Takuro; Oikawa, Kenichi; Tamura, Itaru; Yamauchi, Yasuhiro; Hanashima, Takayasu*; Moyoshi, Taketo*; Nakao, Akiko*; et al.

no journal, , 

Oral presentation

Current status of a TOF-Laue single crystal neutron diffractometer SENJU

Ohara, Takashi; Kiyanagi, Ryoji; Nakao, Akiko*; Hanashima, Takayasu*; Munakata, Koji*; Moyoshi, Taketo*; Kuroda, Tetsuya*; Kaneko, Koji; Tamura, Itaru; Oikawa, Kenichi; et al.

no journal, , 

15 (Records 1-15 displayed on this page)
  • 1