Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Toroidal interferometer/polarimeter density measurement system on ITER

Kondoh, Takashi; Costley, A. E.*; Sugie, Tatsuo; Kawano, Yasunori; Malaquias, A.*; Walker, C. I.*

Review of Scientific Instruments, 75(10), p.3420 - 3422, 2004/10

 Times Cited Count:23 Percentile:72.27(Instruments & Instrumentation)

In order to measure the line average electron density on ITER, a CO$$_{2}$$ laser interferometer/polarimeter system is being developed. The design of the interferometer/polarimeter is improved from the previous design, which uses CO$$_{2}$$ and CO laser, on the basis of experience gained with a dual CO$$_{2}$$ system on JT-60U in which good reliability was confirmed for both interferometry and polarimetry operation. The performance of the dual CO$$_{2}$$ laser meets requirements for ITER (accuracy; 1%, time resolution; 1 ms).

Journal Articles

Spectroscopic diagnostics for ITER

Sugie, Tatsuo; Costley, A. E.*; Malaquias, A.*; Walker, C.*

Purazuma, Kaku Yugo Gakkai-Shi, 79(10), p.1051 - 1061, 2003/10

The main regions - the core, the edge, the scrape-off layer, and the divertor - will be probed by an extensive array of spectroscopic instrumentation covering the visible to X-ray wavelength range. Plasma parameters will be determined including impurity species/density/input-flux, ion temperature, He density, fueling ratio, plasma rotation, effective ionic charge and safety factor q. The measurements will be used for plasma control and in studies to understand and improve the performance of ITER. A diagnostic neutral beam (~100 keV) will be installed for Charge Exchange Recombination Spectroscopy. Motional Stark Effect measurements (for q profile) will be made using the heating beam (1 MeV). Diagnostic components, such as mirrors, windows, and optical fibers etc, mounted close to the plasma will experience higher levels of radiation due to neutron, gamma ray and particle irradiations than in present devices. Potentially their performance characteristics can be degraded and so the materials of the components have to be carefully selected and mitigating methods adopted where possible.

Journal Articles

Spectroscopic measurement system for ITER divertor plasma; Divertor impurity monitor

Sugie, Tatsuo; Costley, A. E.*; Malaquias, A.*; Medvedev, A.*; Walker, C.*

Proceedings of 30th EPS Conference on Controlled Fusion and Plasma Physics (CD-ROM), 4 Pages, 2003/07

The main functions of the Divertor Impurity Monitor are to measure the parameters of impurities and isotopes of hydrogen in the divertor plasmas by using spectroscopic techniques in the wavelength range of 200-1000 nm. This system will have three different types of spectrometers; a) Visible survey spectrometers for impurity species monitoring. b) Filter spectrometers for two-dimensional measurements of particle influxes. c) High dispersion spectrometers for measuring the ion temperature and the particle energy distribution. The divertor region will be observed from the divertor-, the equatorial- and the upper-port. Optical components, such as mirrors, windows etc, mounted close to the plasma will experience higher levels of radiation due to neutron, gamma ray and/or particle irradiations than in present devices. Therefore, the materials of the components have to be carefully selected and mitigating methods adopted where possible. In addition, in-situ and remote calibration methods for diagnostic systems, which will be installed in the strong radiation field, are absolutely essential.

Journal Articles

Toroidal interferometer/polarimeter density measurement system for long pulse operation on ITER

Kondoh, Takashi; Kawano, Yasunori; Costley, A. E.*; Malaquias, A.*; Sugie, Tatsuo; Walker, C.*

Proceedings of 30th EPS Conference on Controlled Fusion and Plasma Physics (CD-ROM), 4 Pages, 2003/07

In order to measure line average electron density for long pulse operation on ITER, a CO$$_{2}$$ laser interferometer/polarimeter system has being selected. High reliability is necessary because the measurements will be used as a reference signal for real time control of the density during long plasma pulses. The design of the interferometer/polarimeter is improved from the previous design because of an input from experiences gained on JT-60U. A dual CO$$_{2}$$ laser interferometer/polarimeter was chosen in order to improve reliability. The proof-of-principle test of the dual CO$$_{2}$$ laser interferometer/polarimeter has been demonstrated and the system is operating routinely on JT-60U. Five tangential sight lines are designed near the midplane of ITER. The laser beams will be transmitted to the plasma through shielding labyrinths in an equatorial port and reflected by retroreflectors. Position of the laser beams will be remotely controlled by steering mirrors outside the port plug because the vacuum vessel of ITER will move due to change in temperature during long plasma pulses.

Journal Articles

Plasma diagnostics for ITER-FEAT

Ebisawa, Katsuyuki*; Costley, A.*; Donn$'e$, A. J. H.*; Janeschitz, G.*; Kasai, Satoshi; Malaquias, A.*; Vayakis, G.*; Walker, C. I.*; Yamamoto, Shin; Zavariaev, V.*

Review of Scientific Instruments, 72(1), p.545 - 550, 2001/01

 Times Cited Count:18 Percentile:67.53(Instruments & Instrumentation)

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1