Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study of safety features and accident scenarios in a fusion DEMO reactor

Nakamura, Makoto; Tobita, Kenji; Gulden, W.*; Watanabe, Kazuhito*; Someya, Yoji; Tanigawa, Hisashi; Sakamoto, Yoshiteru; Araki, Takao*; Matsumiya, Hisato*; Ishii, Kyoko*; et al.

Fusion Engineering and Design, 89(9-10), p.2028 - 2032, 2014/10

 Times Cited Count:13 Percentile:70.4(Nuclear Science & Technology)

After the Fukushima Dai-ichi nuclear accident, a social need for assuring safety of fusion energy has grown gradually in the Japanese (JA) fusion research community. DEMO safety research has been launched as a part of BA DEMO Design Activities (BA-DDA). This paper reports progress in the fusion DEMO safety research conducted under BA-DDA. Safety requirements and evaluation guidelines have been, first of all, established based on those established in the Japanese ITER site invitation activities. The amounts of radioactive source terms and energies that can mobilize such source terms have been assessed for a reference DEMO, in which the blanket technology is based on the Japanese fusion technology R&D programme. Reference event sequences expected in DEMO have been analyzed based on the master logic diagram and functional FMEA techniques. Accident initiators of particular importance in DEMO have been selected based on the event sequence analysis.

Journal Articles

Key aspects of the safety study of a water-cooled fusion DEMO reactor

Nakamura, Makoto; Tobita, Kenji; Someya, Yoji; Tanigawa, Hisashi; Gulden, W.*; Sakamoto, Yoshiteru; Araki, Takao*; Watanabe, Kazuhito*; Matsumiya, Hisato*; Ishii, Kyoko*; et al.

Plasma and Fusion Research (Internet), 9, p.1405139_1 - 1405139_11, 2014/10

Key aspects of the safety study of a water-cooled fusion DEMO reactor is reported. Safety requirements, dose target, DEMO plant model and confinement strategy of the safety study are briefly introduced. The internal hazard of a water-cooled DEMO, i.e. radioactive inventories, stored energies that can mobilize these inventories and accident initiators and scenarios, are evaluated. It is pointed out that the enthalpy in the first wall/blanket cooling loops, the decay heat and the energy potentially released by the Be-steam chemical reaction are of special concern for the water-cooled DEMO. An ex-vessel loss-of-coolant of the first wall/blanket cooling loop is also quantitatively analyzed. The integrity of the building against the ex-VV LOCA is discussed.

Oral presentation

Study of a loss of coolant accident in a tokamak DEMO

Nakamura, Makoto; Tobita, Kenji; Someya, Yoji; Tanigawa, Hisashi; Araki, Takao*; Watanabe, Kazuhito*; Kittaka, Daigo*; Ishii, Kyoko*; Matsumiya, Hisato*

no journal, , 

Recent findings on safety characteristics of a tokamak DEMO reactor are reported in the case where all the coolant water is lost completely and instantaneously. Assuming that there are neither off-site power nor active emergency cooling, we have analyzed temporal histories of the temperatures of the reactor components using the fusion reactor thermo-hydraulic analysis code MELCOR-fus. We have found that even in such an extremely severe case, the temperatures of the vacuum vessel and in-vessel components do not reach their melting points.

3 (Records 1-3 displayed on this page)
  • 1