Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2017-FY2019)

Miyakawa, Kazuya; Mezawa, Tetsuya*; Mochizuki, Akihito; Sasamoto, Hiroshi

JAEA-Data/Code 2020-001, 41 Pages, 2020/03

JAEA-Data-Code-2020-001.pdf:3.75MB
JAEA-Data-Code-2020-001-appendix(CD-ROM).zip:0.34MB

Development of technologies to investigate properties of deep geological environment and model development of geological environment have been pursued in "Geoscientific Research" in the Horonobe Underground Research Laboratory (Horonobe URL) project. A geochemical model which is a part of geological environment model requires the data of groundwater chemistry around the Horonobe URL for the development. This report summarizes the data obtained for 3 years from the fiscal year 2017 to 2019, especially for the results for measurement of physico-chemical parameters and analysis of groundwater chemistry, in the Horonobe URL project.

Journal Articles

Evaluation of uncertainty of redox potential in deep groundwater; A Case study in the Horonobe area, Hokkaido

Mochizuki, Akihito; Sasamoto, Hiroshi; Mezawa, Tetsuya*; Miyakawa, Kazuya

Chikasui Gakkai-Shi, 61(1), p.3 - 20, 2019/02

Redox potential of deep groundwater in the Horonobe area, Hokkaido, was measured, and uncertainty of the measurement and thermodynamic interpretation was evaluated. The redox potential of groundwater obtained using monitoring units in the Underground Research Laboratory ranged between -250 and -100 mV, and the effect of the excavation of drifts on the redox potential is considered to be small in spite of its temporal variation. The redox potential is controlled by the reaction of chemical pairs of SO$$_{4}$$$$^{2-}$$/FeS$$_{2}$$, SO$$_{4}$$$$^{2-}$$/HS$$^{-}$$ and CO$$_{2}$$(aq)/CH$$_{4}$$(aq). The comparison between the equilibrium potential for these reactions and the measured redox potentials suggests that $$pm$$50 mV of uncertainty for the measurement of the redox potential is appropriate.

JAEA Reports

Records of physico-chemical parameters by geochemical monitoring system in the Horonobe Underground Research Laboratory

Mezawa, Tetsuya; Mochizuki, Akihito; Miyakawa, Kazuya; Sasamoto, Hiroshi

JAEA-Data/Code 2018-001, 55 Pages, 2018/03

JAEA-Data-Code-2018-001.pdf:10.63MB
JAEA-Data-Code-2018-001-appendix(CD-ROM).zip:8.57MB

Japan Atomic Energy Agency has been conducting "geoscientific study" and "research and development on geological disposal" in the Horonobe Underground Research Laboratory (URL) for safe geological disposal of high-level radioactive waste. Geochemical parameters of groundwater pressure, pH, and oxidation-reduction potential in the deep groundwater has been continuously monitored with monitoring systems which were developed in the Horonobe URL Project. This report presents the physico-chemical parameters of groundwater which have been obtained by the monitoring systems installed at the 140 m, 250 m and 350 m gallery. The data obtained until March 31, 2017 was summarized along with related information such as the specifications of boreholes and the excavation of the URL.

JAEA Reports

Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2014-2016)

Miyakawa, Kazuya; Mezawa, Tetsuya; Mochizuki, Akihito; Sasamoto, Hiroshi

JAEA-Data/Code 2017-012, 60 Pages, 2017/10

JAEA-Data-Code-2017-012.pdf:7.94MB
JAEA-Data-Code-2017-012-appendix(CD-ROM).zip:0.09MB

Development of technologies to investigate properties of deep geological environment and model development of geological environment have been pursued in "Geoscientific Research" in the Horonobe Underground Research Laboratory (Horonobe URL) project. A geochemical model which is a part of geological environment model requires the data of groundwater chemistry around the Horonobe URL for the development. This report summarizes the data obtained for 3 years from the fiscal year 2014 to 2016, especially for the results for measurement of physico-chemical parameters and analysis of groundwater chemistry, in the Horonobe URL project.

JAEA Reports

Groundwater pressure records by geochemical monitoring system in the Horonobe Underground Research Laboratory

Mezawa, Tetsuya; Mochizuki, Akihito; Miyakawa, Kazuya; Sasamoto, Hiroshi

JAEA-Data/Code 2017-010, 63 Pages, 2017/06

JAEA-Data-Code-2017-010.pdf:9.66MB
JAEA-Data-Code-2017-010-appendix(CD-ROM).zip:5.08MB

Japan Atomic Energy Agency (JAEA) has been conducting "geoscientific study" and "research and development on geological disposal" in the Horonobe Underground Research Laboratory (URL) for safe geological disposal of high-level radioactive waste. Geochemical parameters of groundwater pressure, pH, and oxidation-reduction potential in the deep groundwater has been continuously monitored by the monitoring system which was developed in the Horonobe URL Project. This report presents the data of groundwater pressure which have been obtained by the monitoring system installed at the 140 m and 350 m gallery. The data obtained until March 31, 2016 was summarized along with related information such as the specifications of boreholes and the excavation of the URL.

JAEA Reports

Improvement and development of geochemical monitoring system for groundwater installed in the 350 m gallery of the Horonobe Underground Research Laboratory

Mezawa, Tetsuya; Miyakawa, Kazuya; Sasamoto, Hiroshi; Soga, Koichi*

JAEA-Technology 2016-003, 25 Pages, 2016/05

JAEA-Technology-2016-003.pdf:2.91MB

Development of the monitoring technique for hydro-geochemical conditions of groundwater in low permeable sedimentary rocks with high content of dissolved gases in the underground facility is one of key issues in the Underground Research Laboratory (URL) project in order to obtain the reliable geochemical data. Development of the monitoring system for the groundwater geochemistry was conducted previously at the 140m gallery in the Horonobe URL. Thereafter, improvement and development of the monitoring system have been performed at the 350m gallery as the course of development technology to monitor the hydro-geochemical conditions during the URL construction. In this report, the results including the improvement and development of the monitoring system for the groundwater geochemistry at the 350m gallery and the several examples of data acquisition are presented.

Oral presentation

A Case study for evaluation of uncertainty of redox potential in deep groundwater

Mochizuki, Akihito; Sasamoto, Hiroshi; Mezawa, Tetsuya*; Miyakawa, Kazuya

no journal, , 

Redox potential of deep groundwater in the Horonobe area, Hokkaido, was measured, and uncertainty of the measurement and thermodynamic interpretation was evaluated. The redox potential of groundwater ranged between -250 and -100 mV, and the effect of the excavation of drifts on the redox potential is considered to be small in spite of its temporal variation. The redox potential is controlled by the reaction of chemical pairs of SO$$_{4}$$$$^{2-}$$/FeS$$_{2}$$, SO$$_{4}$$$$^{2-}$$/HS$$^{-}$$ and CO$$_{2}$$(aq)/CH$$_{4}$$(aq). The comparison between the equilibrium potential for these reactions and the measured redox potentials suggests that $$pm$$50 mV of uncertainty for the measurement of the redox potential is appropriate.

7 (Records 1-7 displayed on this page)
  • 1