Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 55

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-3, JRR-4 and JRTF facilities, 2

Tobita, Minoru*; Goto, Katsunori*; Omori, Takeshi*; Osone, Osamu*; Haraga, Tomoko; Aono, Ryuji; Konda, Miki; Tsuchida, Daiki; Mitsukai, Akina; Ishimori, Kenichiro

JAEA-Data/Code 2023-011, 32 Pages, 2023/11

JAEA-Data-Code-2023-011.pdf:0.93MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to the study of radioactivity concentration evaluation methods for radioactive wastes generated from nuclear research facilities, we collected and analyzed concrete samples generated from JRR-3, JRR-4 and JAERI Reprocessing Test Facility. In this report, we summarized the radioactivity concentrations of 23 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{137}$$Cs, $$^{133}$$Ba, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{235}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2021-2022.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2019

Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Hanamuro, Takahiro; Shimada, Akiomi; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; et al.

JAEA-Research 2020-011, 67 Pages, 2020/10

JAEA-Research-2020-011.pdf:3.87MB

This annual report documents the progress of research and development (R&D) in the 5th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2020)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Koji; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; Komatsu, Tetsuya; Yokoyama, Tatsunori; et al.

JAEA-Review 2020-010, 46 Pages, 2020/07

JAEA-Review-2020-010.pdf:1.89MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2020. The objectives and contents in fiscal year 2020 are described in detail based on the JAEA 3rd Medium- and Long-term Plan (fiscal years 2015-2021). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2018

Ishimaru, Tsuneari; Ogata, Nobuhisa; Hanamuro, Takahiro; Shimada, Akiomi; Kokubu, Yoko; Asamori, Koichi; Niwa, Masakazu; Shimada, Koji; Watanabe, Takahiro; Saiga, Atsushi; et al.

JAEA-Research 2019-006, 66 Pages, 2019/11

JAEA-Research-2019-006.pdf:4.39MB

This annual report documents the progress of research and development (R&D) in the 4th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this report, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2019)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Hanamuro, Takahiro; Shimada, Akiomi; Kokubu, Yoko; Asamori, Koichi; Niwa, Masakazu; Shimada, Koji; Watanabe, Takahiro; Sueoka, Shigeru; et al.

JAEA-Review 2019-010, 46 Pages, 2019/09

JAEA-Review-2019-010.pdf:2.45MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency, in fiscal year 2019. The objectives and contents in fiscal year 2019 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2017

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Akiomi; Asamori, Koichi; Kokubu, Yoko; Niwa, Masakazu; Watanabe, Takahiro; Saiga, Atsushi; Sueoka, Shigeru; Komatsu, Tetsuya; et al.

JAEA-Research 2018-015, 89 Pages, 2019/03

JAEA-Research-2018-015.pdf:14.43MB

This annual report documents the progress of research and development (R&D) in the 3rd fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this report, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific Program for fiscal year 2018)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Akiomi; Asamori, Koichi; Kokubu, Yoko; Niwa, Masakazu; Watanabe, Takahiro; Saiga, Atsushi; Sueoka, Shigeru; Komatsu, Tetsuya; et al.

JAEA-Review 2018-020, 46 Pages, 2019/01

JAEA-Review-2018-020.pdf:1.25MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency, in fiscal year 2018. The objectives and contents in fiscal year 2018 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2016

Ishimaru, Tsuneari; Yasue, Kenichi*; Asamori, Koichi; Kokubu, Yoko; Niwa, Masakazu; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Saiga, Atsushi; Shimizu, Mayuko; et al.

JAEA-Research 2018-008, 83 Pages, 2018/12

JAEA-Research-2018-008.pdf:11.43MB

This annual report documents the progress of research and development (R&D) in the 2nd fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2017)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Akiomi; Kokubu, Yoko; Asamori, Koichi; Niwa, Masakazu; Watanabe, Takahiro; Saiga, Atsushi; Sueoka, Shigeru; Yokoyama, Tatsunori; et al.

JAEA-Review 2017-022, 45 Pages, 2017/12

JAEA-Review-2017-022.pdf:1.42MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency, in fiscal year 2017. The objectives and contents in fiscal year 2017 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2015

Ishimaru, Tsuneari; Umeda, Koji*; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; et al.

JAEA-Research 2016-023, 91 Pages, 2017/02

JAEA-Research-2016-023.pdf:13.33MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

Journal Articles

Verification of the quantitative method to measure enrichment of uranium-235 in radioactive waste

Yokoyama, Kaoru; Sato, Katsunori*; Yamanaka, Takashi*; Ishimori, Yuu

Radioisotopes, 65(11), p.441 - 450, 2016/11

It is important for the processing manufacturers of the uranium fuels to determine the quantity of U-235 and the enrichment. This study shows that the U-235 content evaluated from measurement of 186 keV $$gamma$$ rays emitted from U-235 can be corrected by a shielding factor, Xgeometry which quantified uneven distribution of U-238. The Xgeometry is evaluated from the direct and the scattered $$gamma$$ rays from the 1001 keV emitted from the Pa-234m. The Xgeometry was originally introduced for U-238 measurements. Because U-235 coexists with U-238, the Xgeometry is also possible to apply to the U-235 measurements. The experimental study with simulated waste drums demonstrated that the quantification errors of the U-235 content and the enrichment are reduced considering the factor.

Journal Articles

Bithiophene with winding vine-shaped molecular asymmetry; Preparation, structural characterization, and enantioselective synthesis

Toyomori, Yuka*; Tsuji, Satoru*; Mitsuda, Shinobu*; Okayama, Yoichi*; Ashida, Shiomi*; Mori, Atsunori*; Kobayashi, Toru; Miyazaki, Yuji; Yaita, Tsuyoshi; Arae, Sachie*; et al.

Bulletin of the Chemical Society of Japan, 89(12), p.1480 - 1486, 2016/09

 Times Cited Count:8 Percentile:29.66(Chemistry, Multidisciplinary)

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2016)

Ishimaru, Tsuneari; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Yokoyama, Tatsunori; Fujita, Natsuko; Shimizu, Mayuko; Hama, Yuki

JAEA-Review 2016-016, 44 Pages, 2016/08

JAEA-Review-2016-016.pdf:2.28MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in JAEA, in fiscal year 2016. The objectives and contents in fiscal year 2016 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Decommissioning activities and R&D of nuclear facilities in the second midterm plan

Terunuma, Akihiro; Mimura, Ryuji; Nagashima, Hisao; Aoyagi, Yoshitaka; Hirokawa, Katsunori*; Uta, Masato; Ishimori, Yuu; Kuwabara, Jun; Okamoto, Hisato; Kimura, Yasuhisa; et al.

JAEA-Review 2016-008, 98 Pages, 2016/07

JAEA-Review-2016-008.pdf:11.73MB

Japan Atomic Energy Agency formulated the plan to achieve the medium-term target in the period of April 2010 to March 2015(hereinafter referred to as "the second medium-term plan"). JAEA determined the plan for the business operations of each year (hereinafter referred to as "the year plan"). This report is that the Sector of Decommissioning and Radioactive Waste Management has summarized the results of the decommissioning technology development and decommissioning of nuclear facilities which were carried out in the second medium-term plan.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2015)

Umeda, Koji; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Fujita, Natsuko; Shimizu, Mayuko; Matsubara, Akihiro; Tamura, Hajimu; Yokoyama, Tatsunori; et al.

JAEA-Review 2015-019, 42 Pages, 2015/09

JAEA-Review-2015-019.pdf:4.64MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in JAEA, in fiscal year 2015. The objectives and contents in fiscal year 2015 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Research on geosphere stability for long-term isolation of radioactive waste; Scientific programme for fiscal years 2015-2021

Umeda, Koji; Yasue, Kenichi; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Fujita, Natsuko; Shimizu, Mayuko; Shimada, Akiomi; Matsubara, Akihiro; Tamura, Hajimu; et al.

JAEA-Review 2015-012, 43 Pages, 2015/08

JAEA-Review-2015-012.pdf:1.24MB

The concept of geological disposal of high-level radioactive waste (HLW) in Japan is based on a multibarrier system which combines a stable geological environment with an engineered barrier system. Potential geological host formations and their surroundings are chosen, in particular, for their long-term stability, taking into account the fact that Japan is located in tectonically active zone. This report is to outline 7 years plan (fiscal years 2015-2021) of research and development (R&D) for geosphere stability for long-term isolation of the HLW in JAEA. Background of this research is clarified with the necessity and the significance, and the past progress in this report. The objectives, outline, contents and schedule during the next 7 years are described in detail. In addition, the plan framework is structured into the following categories: (1) Development and Systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

Journal Articles

Axially chiral macrocyclic $$E$$-alkene bearing bisazole component formed by sequential C-H homocoupling and ring-closing metathesis

Nishio, Shotaro*; Somete, Takashi*; Sugie, Atsushi*; Kobayashi, Toru; Yaita, Tsuyoshi; Mori, Atsunori*

Organic Letters, 14(10), p.2476 - 2479, 2012/05

 Times Cited Count:23 Percentile:61.69(Chemistry, Organic)

Journal Articles

Thermoresponsive extraction of cadmium(II) ions by poly(TPEN-NIPA) gels; Effect of chain length and branched spacer structure on gel formation and extraction behavior

Inaba, Yusuke*; Tsumagari, Takayuki*; Kida, Tatsuya*; Watanabe, Wataru*; Nakajima, Yasutaka*; Fukuoka, Sachio*; Mori, Atsunori*; Matsumura, Tatsuro; Nakano, Yoshio*; Takeshita, Kenji*

Polymer Journal, 43(7), p.630 - 634, 2011/07

 Times Cited Count:11 Percentile:35.66(Polymer Science)

${it N,N,N',N'}$-(tetrakis-2-pyridylmethyl)ethylenediamine (TPEN) derivatives bearing a polymerizable double bond in the substituent structure of the pyridine ring are synthesized and subjected to copolymerization with ${it N}$-isopropylacrylamide in the presence of AIBN. The obtained poly(TPEN-NIPA) gels show thermo-responsive swelling/shrinking behaviors and are employed for the extraction of cadmium(II) ion from the aqueous solution to examine the relationship of the gel characteristics and the extraction performance. The polymer gels composed of the TPEN derivative bearing C3, C4, C10 and branched C3 spacer chains are synthesized and temperature-dependent extraction behavior of cadmium ion is compared. These gels extract Cd(II) ion efficiently from the aqueous solution in the swelling state at 5$$^{circ}$$C, while little extraction is observed at 45$$^{circ}$$C with shrinking. It is found that poly(TPEN-NIPA) gel of branched C3 spacer (C3b) shows the excellent thermoresponsive extraction performance.

Journal Articles

Am/Eu separation with a new ligand, N,N,N',N'-tetrakis((4-butoxypyridin-2-yl)methyl)ethylenediamine (TBPEN), a hydrophobic derivative of TPEN

Matsumura, Tatsuro; Inaba, Yusuke*; Mori, Atsunori*; Takeshita, Kenji*

Journal of Nuclear Science and Technology, 47(2), p.123 - 126, 2010/02

 Times Cited Count:12 Percentile:62.45(Nuclear Science & Technology)

We are developing a new MA/Ln separation process with TPEN and its derivatives for P&T technology. TPEN is a hexadentate soft-donor ligand that has six soft-donor sites as a kind of podand type molecule and can encapsulate a metal ion. TPEN has good selectivity of Am(III) from Ln(III) and has potential to establish partitioning of MA. From the viewpoint of practical application, the hydrophobicity of TPEN must be improved. Because the dissolution of a slight amount of TPEN (about 10$$^{-4}$$ mol/l) to water will restrict decontamination of Ln in extraction process. In this study, the hydrophobicity of TPEN was improved by introducing alkyl groups and the effect of the introduction of alkyl groups on the separation of Am(III) and Eu(III) was examined. One of them, N,N,N',N'-tetrakis((5-butoxypyridin-2-yl)-methyl)ethylenediamine, TBPEN, showed good selectivity and the maximum separation factor, SF$$_{Am/Eu}$$, was 91 at pH 3.02. The hydrophobicity of TBPEN is checked by the distribution data between water and chloroform, and improved successfully. The approach for development of hydrophobic derivatives of TPEN was effective.

55 (Records 1-20 displayed on this page)