Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 79

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Public acceptance as a driver for repository design

McKinley, I. G.*; Masuda, Sumio*; Hardie, S. M. L.*; Umeki, Hiroyuki*; Naito, Morimasa; Takase, Hiroyasu*

Journal of Energy, 2018, p.7546158_1 - 7546158_8, 2018/07

The Japanese geological disposal programme for radioactive waste is based on a volunteering approach to siting, which places particular emphasis on the need for public acceptance. This emphasises the development of a repository project as a partnership with local communities and involves stakeholders in important decisions associated with key milestones in the selection of repository sites and subsequent construction, operation and closure. To date, however, repository concept development has proceeded in a more traditional manner, focusing particularly on ease of developing a post-closure safety case. In the current project, we have attempted to go further by assessing what requirements stakeholders would place on a repository and assessing how these could be used to re-think repository designs so that they meet the desires of the public without compromising critical operational or long-term safety.

Journal Articles

Progress in the geological disposal program in Japan

Deguchi, Akira*; Umeki, Hiroyuki*; Ueda, Hiroyoshi*; Miyamoto, Yoichi; Shibata, Masahiro; Naito, Morimasa; Tanaka, Toshihiko*

LBNL-1006984 (Internet), p.12_1 - 12_22, 2016/12

The H12 report demonstrated the feasibility of safe and technically reliable geological disposal in 1999. The Government of Japan re-evaluated the geological disposal program in terms of technical feasibility based on state-of-the-art geosciences and implementation process, because more than 10 years have passed from H12 and the Great Earthquake and nuclear accident have increased public concern regarding nuclear issues and natural hazards to cause accidents at nuclear facilities. Following the re-evaluation, the Government concluded further to promote geological disposal program, and thus the Basic Policy for Final Disposal was revised in 2015 including a new approach to siting process with identification of "Scientifically Preferable Areas". NUMO and relevant research organizations such as JAEA have been carrying out R and D activities to increase technical reliability for geological disposal. NUMO has started to develop a generic safety case.

Journal Articles

Current status of R&D activities and future plan and role of JAEA's two generic URLs

Koide, Kaoru; Osawa, Hideaki; Ito, Hiroaki; Tanai, Kenji; Semba, Takeshi; Naito, Morimasa; Sugihara, Kozo; Miyamoto, Yoichi

Annual Waste Management Symposium (WM 2015), Vol.5, p.3631 - 3645, 2015/00

JAEA has promoted R&D on HLW geological disposal technology. JAEA launched the Mizunami and the Horonobe URL Projects to cover the diversity of geological environments in Japan. The Mizunami URL Project is a geoscientific research project in the crystalline rock environment. The Horonobe URL Project consists of geoscientific studies and R&D on geological disposal technology in the sedimentary rock environment. Both URL projects have been planned to proceed in three overlapping phases, Surface-based investigation Phase, Construction Phase and Operation Phase. Currently, the construction of research galleries in both of the Mizunami and the Horonobe URLs has been completed to 500 m and 350 m depths, respectively. JAEA will promote R&D activities in Phase III including study of the long-term evolution of the geological environment, and contribute to international cooperation, development of human resources and communication amongst stakeholders through both URL projects.

Journal Articles

Characteristic evaluation of colloidal silica grout material developed for a high level radioactive waste geological repository

Kishi, Hirokazu; Kawaguchi, Masanao; Naito, Morimasa; Hatanaka, Koichiro; Nobuto, Jun*; Sugiyama, Hirokazu*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 19(1), p.3 - 8, 2012/06

To reduce amount of groundwater inflow into a geological repository, the grouting is expected to play a very important role because the geological environment in Japan is often characterized by many fractures and abundant groundwater. Basically, cementitious materials are used for grouting, however the resulting highly alkaline plume released from the materials could influence the long-term performance of barrier system as a consequence of alteration of both the buffer material and the host rock. To minimize such effects, JAEA has carried out research and development on three types of grout material with low-pH performance that decreases influence in the alteration. This paper focuses on the Colloidal silica grout, and presents its unique characteristics obtained from laboratory tests on pH, viscosity, leaching and so on. The results indicate that the grout has good performances in pH and viscosity. It is concluded that the grout can be greatly used for the repository.

Journal Articles

Mix design of low pH cement shotcrete in high level radioactive waste repositories

Noguchi, Akira; Kishi, Hirokazu; Hatanaka, Koichiro; Naito, Morimasa

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 6 Pages, 2011/10

A standardized method for choosing a mix design of low pH shotcrete is proposed for their intended use in the construction of a High Level Radioactive Waste (HLW) repository in order to be applied to the various geological environment of the location of the HLW repositories. There are two improvement in this method. One is estimating binder composition to satisfy low pH. The other is estimating water bender ratio to satisfy the strength of sprayed concrete. The method uses a sequential development process with consideration given to a number of physicochemical requirements, incorporates current shotcrete technology. The method is demonstrated in its entirety through a series of experiments and tests using a low pH cement binder comprised of a mixture of ordinary Portland cement, fly ash (FA) and silica fume (SF), referred to here as high-volume FA SF cement (HFSC). Moreover, the method is referred from the demonstration of HFSC shotcrete in Horonobe underground research laboratory.

Journal Articles

Development of an accurate methodology for measuring the pore fluid pH of low-pH cementitious materials

Alonso, M. C.*; Garc$'i$a Calvo, J. L.*; Pettersson, S.*; Cu$~n$ado, M.*; Vuorio, M.*; Weber, H.*; Ueda, Hiroyoshi*; Naito, Morimasa; Walker, C.

Proceedings of 13th International Congress on the Chemistry of Cement (13th ICCC) (CD-ROM), 7 Pages, 2011/07

Low pH cementitious (LopHC) materials are expected to be used in the construction of an underground repository for the geological disposal of high level radioactive waste (HLW). A fundamental aspect of the development of LopHC is the accurate and reliable measurement of the pore fluid pH in order to qualify and help quantify mix designs to achieve specific pH targets. The main objective of the current research is the development of an agreed protocol for measuring the pH value of LopHC. There are four different methods described in the literature for characterizing the pore solution of cementitious materials: (1) Pore fluid expression; (2) Leaching methods, including both in-situ and ex-situ techniques); (3) Percolation methods; and (4) Embedded pH sensors. In a first step, different parameters that may affect the measured pH values were evaluated, including the solid/liquid ratio, fineness, carbonation, time, and the results obtained from a pH meter in comparison with an OH titration. Based on the results obtained from the first step, selected protocols were proposed and tested for reproducibility and repeatability in 8 laboratories of 7 countries using the same LopHC sample. The proposed methodologies showed very promising results with low deviation and high reproducibility and have allowed the development of an agreed set of simple protocols for the determination of pH in LopHC.

Journal Articles

Propagation behaviour of general and localised corrosion of carbon steel in simulated groundwater under aerobic conditions

Taniguchi, Naoki; Suzuki, Hiroyuki; Kawasaki, Manabu; Naito, Morimasa; Kobayashi, Masato*; Takahashi, Rieko*; Asano, Hidekazu*

Corrosion Engineering, Science and Technology, 46(2), p.117 - 123, 2011/04

 Times Cited Count:9 Percentile:47.15(Materials Science, Multidisciplinary)

Carbon steel has been selected as one of the candidate materials for overpack for geological disposal of high-level radioactive waste in Japan. Corrosion of carbon steel is divided into two types; general corrosion and localized corrosion. In this study, propagation behaviors of general and localized corrosions (pitting corrosion and crevice corrosion) were investigated by immersion tests of carbon steel under aerobic condition. The results of the immersion tests showed that the growth rate of corrosion was strongly dependent on the environmental condition and steel type, but the upper limit of pitting factor (the ratio of the maximum corrosion depth and the average corrosion depth) was approximately determined by only average corrosion depth. Based on these experimental data and literature data, an empirical model that predicts the maximum corrosion depth of an overpack from average corrosion depth was developed by applying the extreme value statistical analysis using the Gumbel distribution function.

Journal Articles

Long term integrity of overpack closure weld for HLW geological disposal, 2; Corrosion properties under anaerobic conditions

Kobayashi, Masato*; Yokoyama, Yutaka*; Takahashi, Rieko*; Asano, Hidekazu*; Taniguchi, Naoki; Naito, Morimasa

Corrosion Engineering, Science and Technology, 46(2), p.212 - 216, 2011/04

 Times Cited Count:4 Percentile:29.15(Materials Science, Multidisciplinary)

The corrosion behaviour of a carbon steel weld joint under anaerobic conditions was investigated to estimate the long-term integrity of the carbon steel overpack. The weld specimens in this study were produced using three welding methods: GTAW, GMAW and EBW. General corrosion was observed for each immersion specimen and the weld joint corrosion rate was the same as or less than that of the base metal. The hydrogen concentration absorbed during immersion testing was less than 2.48$$times$$10$$^{-5}$$ mol kg[Fe]$$^{-1}$$(0.05 ppm) after three years, a value regarded as having little influence on hydrogen embrittlement. The susceptibility to hydrogen embrittlement was highest in the base metal, suggesting that there was little adverse effect on the weld joint from welding. The welded carbon steel overpack is assumed to maintain its resistance to corrosion as a disposal container for the expected lifetime under anaerobic underground conditions.

JAEA Reports

Horonobe Underground Research Laboratory Project; Synthesis of phase I investigation 2001 - 2005, Volume "Geological disposal research"

Fujita, Tomoo; Taniguchi, Naoki; Matsui, Hiroya; Tanai, Kenji; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; et al.

JAEA-Research 2011-001, 193 Pages, 2011/03

JAEA-Research-2011-001.pdf:5.23MB

This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in the Horonobe Underground Research Laboratory project as an example of actual geological environment.

JAEA Reports

A Study on the technology for reducing cement-type materials used for tunnel supports at high-level radioactive waste disposal sites (Joint research)

Hayashi, Katsuhiko; Noguchi, Akira; Kishi, Hirokazu; Kabayashi, Yasushi*; Nakama, Shigeo; Fujita, Tomoo; Naito, Morimasa; Tada, Hiroyuki*; Kumasaka, Hiroo*; Goke, Mitsuo*; et al.

JAEA-Research 2010-057, 101 Pages, 2011/03

JAEA-Research-2010-057.pdf:7.47MB

Cement-type materials that are used for supports or grouting at high-level radioactive waste disposal facilities leach into the groundwater and create a highly alkaline environment. Of concern in highly alkaline environments are the alteration of bentonite used as buffers or backfill materials, and of surrounding rock mass, and the increased uncertainty regarding the provision of performance of the disposal system over a long period of time. In this study, to reduce the quantity of cement-type materials that cause highly alkaline environments, technical feasibility of the support structure including the materials which considered the long-term performance of the HLW disposal system are discussed by using knowledge and technology accumulated in JAEA and Shimizu Construction. Moreover, based on the results, the problems remained in the application to the future HLW disposal institution are summarized.

Journal Articles

Corrosion behavior of carbon steel in compacted bentonite saturated with simulated groudwater under anaerobic condition

Taniguchi, Naoki; Kawasaki, Manabu; Naito, Morimasa

Zairyo To Kankyo, 59(11), p.418 - 429, 2010/11

Immersion tests of carbon steel were performed in compacted bentonite for 10 years duration under anaerobic condition. The ferrous carbonates were identified as the corrosion product by XRD and XPS analysis in almost test cases. The amount of corrosion in high carbonate concentration was smaller than those of other test conditions throughout the test periods. Although the corrosion rate at 50$$^{circ}$$C was initially smaller than that at 80$$^{circ}$$C, it resulted in larger value after several years. Such the effects of carbonate content and temperature on the long-term corrosion rate seemed to be correlated to the behavior of dissolution/precipitation of iron carbonate. Additionally, the correlation between initial corrosion amount and the protectiveness of corrosion product film was examined. Except for high carbonate condition, as the corrosion amount at early stage of immersion was larger, the corrosion product film tended to become more protective. The long-term corrosion depth was estimated by the extrapolation of the laboratory test results. The range of the estimated value was well agreed with that of archaeological analogue data.

JAEA Reports

Development of grout materials for a geological disposal system for high-level radioactive waste

Fukuoka, Naomi; Shinkai, Fumiaki; Miura, Norihiko*; Nobuto, Jun*; Yamada, Tsutomu*; Naito, Morimasa

JAEA-Data/Code 2010-005, 353 Pages, 2010/07

JAEA-Data-Code-2010-005-01.pdf:8.91MB
JAEA-Data-Code-2010-005-02.pdf:46.47MB

High-level radioactive waste management in Japan is based on the multi-barrier concept, composed of the engineered barrier system and the surrounding geological formations. Although cementitious materials are commonly used for rock support, lining, and grouting, their pH plume are considered to have an adverse effect on long-term safety of a geological disposal system. In addition, during the emplacement of waste package with buffer material, it is required to limit amount of groundwater inflow into a disposal pit or tunnel to a certain level by grouting because the bentonite clay buffer is easy to swell in time by contact with the groundwater. Therefore, it is necessary to develop new grout materials with penetrability for smaller fractures. This report shows the most appropriate composition of new grout materials to be suitable for the in-situ experiment based on the result of indoor test.

JAEA Reports

Information basis for developing comprehensive waste management system; US-Japan Joint Nuclear Energy Action Plan Waste Management Working Group Phase I report (Joint research)

Yui, Mikazu; Ishikawa, Hirohisa; Watanabe, Atsuo*; Yoshino, Kyoji*; Umeki, Hiroyuki; Hioki, Kazumasa; Naito, Morimasa; Seo, Toshihiro; Makino, Hitoshi; Oda, Chie; et al.

JAEA-Research 2010-015, 106 Pages, 2010/05

JAEA-Research-2010-015.pdf:13.58MB

This report summarizes the activity of Phase I of Waste Management Working Group of the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The working group focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios in both countries were surveyed and summarized. Secondly, the waste management/disposal system optimization was discussed. Repository system concepts for the various classifications of nuclear waste were reviewed and summarized, then disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Finally the potential collaboration areas and activities related to the optimization problem were extracted.

Journal Articles

Development of superfine spherical silica grout as an alternative grouting material for the geological disposal of long-lived radioactive waste

Naito, Morimasa; Kishi, Hirokazu; Fukuoka, Naomi; Yamada, Tsutomu*; Ishida, Hideaki*

Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 7 Pages, 2010/05

As an alternative grouting material for the geological repository of long-lived radioactive waste, the "Superfine Spherical silica Grout" (SFSG) material is developed using a fine spherical silica and a fine calcium hydroxide. The developed SFSG material takes an advantage of its smaller particle size distribution (max. $$sim$$1 micron or less) than those of the cementitious materials, and also provides a low alkaline environment so as to reduce unfavorable effects on the long-term performance of geological disposal system. The SFSG is a mixture of the super fine silica powder, the superfine calcium hydroxide and additives such as superplasticizer. Some preliminary laboratory experiments were carried out to characterize its fundamental properties from the viewpoint of practical use for geological disposal, which is required to be equivalent with the conventional cementitious materials in terms of penetrability, strength, pH performance and workability.

JAEA Reports

Effect of impurity elements in metal on the corrosion behavior of carbon steel in carbonate aqueous solution and synthetic seawater

Taniguchi, Naoki; Suzuki, Hiroyuki*; Naito, Morimasa

JAEA-Research 2009-068, 31 Pages, 2010/03

JAEA-Research-2009-068.pdf:5.08MB

Corrosion of metal is an interaction between the material and the environment, so that the corrosion behavior of carbon steel overpack might be affected by not only the environmental factors but also the material factors. In this study, the effect of general impurities in carbon steel such as C, Si, Mn, P and S on the electrochemical behavior and the corrosion rate were studied using carbonate aqueous solution and synthetic seawater. The experimental results were summarized as follows; (1) The effect of the impurities on the critical passivation current density, $$I_{p}$$ and the passive current density, $$I_{pass}$$ were small in 0.01M carbonate aqueous solution at pH10. (2) Breakdown of passive film and increase in anodic dissolution were observed in the tests for high Si condition of 0.73% and 0.97%. (3) In buffer material saturated with 0.01M carbonate aqueous solution, no passivation was observed and the effect of impurities on the anodic polarization behavior was small. (4) The corrosion rate of carbon steel in seawater was increased with the concentration of impurities. Among the impurity elements, the effects of P and Mn were relatively large. (5) It was inferred that the increase in corrosion rates in synthetic seawater by the addition of Si, Mn and P was promoted by the activation of hydrogen evolution reaction as a cathodic reaction.

JAEA Reports

Stress corrosion cracking behavior of pure copper in ammonia solution and groundwater containing ammonium ion

Taniguchi, Naoki; Kawasaki, Manabu; Naito, Morimasa

JAEA-Research 2009-067, 29 Pages, 2010/03

JAEA-Research-2009-067.pdf:8.68MB

Since the propagation rate of stress corrosion cracking (SCC) is generally larger than that of other corrosion mode without cracking, it is difficult to avoid the penetration due to SCC by designing the corrosion allowance. Therefore, it is important to clarify the possibility of SCC initiation or conditions where SCC is possible to be occurred. It has been known that copper and copper alloys are susceptible to SCC in ammonia environment depending on the conditions. In this study, the SCC susceptibility of oxygen free copper was investigated in ammonia solution and groundwater containing ammonium ion under oxidizing condition by slow strain rate technique. As the results, no SCC was observed both in 0.05M and 0.1M NH$$_{4}$$OH solution. In Horonobe groundwater containing ammonium ion, brittle fracture surface and cracks were observed at -144mV vs. SCE. The morphologies of the SCC were not only intergranular type but also transgranular type and transgranular cracks branched from intergranular crack. In these test conditions, corrosion products were strongly adhered to the specimen surface and inside of the cracks. This indicates that the SCC was caused by tarnish rupture mechanism. In buffer material saturated with Horonobe groundwater, mechanical properties such as maximum stress and fracture strain were comparable with those in silicon oil, and no distinct cracks due to SCC were detected on the specimens.

JAEA Reports

Localized corrosion behavior of carbon steel in high-pH seawater-type groundwater environment

Taniguchi, Naoki; Suzuki, Hiroyuki*; Naito, Morimasa

JAEA-Research 2009-066, 18 Pages, 2010/03

JAEA-Research-2009-066.pdf:7.96MB

It has been known that carbon steel can be passivated in high pH environment and sometimes be attacked by localized corrosion such as pitting corrosion, crevice corrosion. If carbon steel overpack is attacked by localized corrosion, it is possible that the overpack may be penetrated in a short term, since the propagation rate of localized corrosion is larger than that of general corrosion in general. It has been known that the pitting corrosion and crevice corrosion are initiated in the presence of aggressive species for passive film represented by chloride ion. In repository environment, it is possible that the pH in groundwater containing chloride ion such as seawater type groundwater is raised by a contact with the cement material in concrete structures constructed around the engineered barrier system and then pitting corrosion or crevice corrosion is caused on the carbon steel overpacks. In this study, the propagation behavior of pitting corrosion and crevice corrosion was examined by immersion tests under air equilibrium condition using artificial groundwater at Horonobe as an example of seawater-type groundwater. As the results, the pitting factor (ratio of the maximum corrosion depth and average corrosion depth) were within the literature data obtained in neutral and alkaline water and in various natural water environments. The maximum corrosion depth of carbon steel overpack was predicted by extreme value statistical analysis of the experimental data, and it was confirmed that the predicted corrosion depths were not over the values calculated from current empirical models for propagation of pitting corrosion and crevice corrosion in every cases.

Journal Articles

Anodic polarization behavior and film breakdown potential of pure copper in the simulated geological environment containing carbonate

Kawasaki, Manabu; Taniguchi, Naoki; Naito, Morimasa

Corrosion Engineering, 58(11), p.465 - 482, 2009/11

In order to clarify the influence of environmental factors on the corrosion behavior of copper overpacks in oxidizing environment, potentiodynamic and potentiostatic anodic polarization tests were performed in carbonate aqueous solutions at 80 $$^{circ}$$C. As the results, the passivation was promoted and film breakdown was suppressed in higher carbonate concentrations, in lower chloride ion concentrations, and in higher pH conditions. The sulfate ion tended to promote the film breakdown of copper. The effects of the composition of the test solutions on the anodic polarization curve of copper in bentonite/sand mixture were quite smaller than those in simple aqueous solution. By comparison with previous data for lower temperature condition, it was clarified that passivation of copper was promoted in higher temperature condition, but breakdown potential, Eb was independent of temperature. The Eb, was expressed as a function of the ratio of aggressive ion and inhibiting ion such as [Cl$$^{-}$$]/[HCO$$_{3}$$$$^{-}$$] and [SO$$_{4}$$$$^{2-}$$]/[HCO$$_{3}$$$$^{-}$$], and it was confirmed that the Eb was lowered with increasing the ratio. When the ratio exceeds a certain value, the Eb was no longer able to be determined since the anodic poralization curve becomes active dissolution type. The lower limit of Eb in passive type region was estimated to be about -200 mV vs. SCE. The results of potentiostatic tests showed that pitting corrosion or non-uniform corrosion was observed at the potentials over Eb or second current peak potentials in anodic polarization curve.

Journal Articles

Anodic polarization behavior and film breakdown potential of pure copper in the simulated geological environment containing carbonate

Kawasaki, Manabu; Taniguchi, Naoki; Naito, Morimasa

Zairyo To Kankyo, 58(11), p.386 - 394, 2009/11

In order to clarify the influence of environmental factors on the corrosion behavior of copper overpacks in oxidizing environment, potentiodynamic and potentiostatic anodic polarization tests were performed in carbonate aqueous solutions at 80 $$^{circ}$$C. As the results, the passivation was promoted and film breakdown was suppressed in higher carbonate concentrations, in lower chloride ion concentrations, and in higher pH conditions. The sulfate ion tended to promote the film breakdown of copper. The effects of the composition of the test solutions on the anodic polarization curve of copper in bentonite/sand mixture were quite smaller than those in simple aqueous solution. By comparison with previous data for lower temperature condition, it was clarified that passivation of copper was promoted in higher temperature condition, but breakdown potential, Eb was independent of temperature. The Eb, was expressed as a function of the ratio of aggressive ion and inhibiting ion such as [Cl$$^{-}$$]/[HCO$$_{3}$$$$^{-}$$] and [SO$$_{4}$$$$^{2-}$$]/[HCO$$_{3}$$$$^{-}$$], and it was confirmed that the Eb was lowered with increasing the ratio. When the ratio exceeds a certain value, the Eb was no longer able to be determined since the anodic poralization curve becomes active dissolution type. The lower limit of Eb in passive type region was estimated to be about -200mV vs. SCE. The results of potentiostatic tests showed that pitting corrosion or non-uniform corrosion was observed at the potentials over Eb or second current peak potentials in anodic polarization curve.

Journal Articles

Applicability study on the design method for the buffer material of a HLW repository

Tanai, Kenji; Naito, Morimasa

Proceedings of International Conference on Advanced Nuclear Fuel Cycle; Sustainable Options & Industrial Perspectives (Global 2009) (CD-ROM), p.796 - 805, 2009/09

79 (Records 1-20 displayed on this page)