Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 56

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of excavation damaged zones (EDZs) in Horonobe Underground Research Laboratory (URL)

Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei; Miyara, Nobukatsu*

Journal of Rock Mechanics and Geotechnical Engineering, 16(2), p.365 - 378, 2024/02

Excavation of underground caverns, such as mountain tunnels and energy-storage caverns, may cause the damages to the surrounding rock as a result of the stress redistribution. In this influenced zone, new cracks and discontinuities are created or propagate in the rock mass. Therefore, it is effective to measure and evaluate the acoustic emission (AE) events generated by the rocks, which is a small elastic vibration, and permeability change. The authors have developed a long-term measurement device that incorporates an optical AE (O-AE) sensor, an optical pore pressure sensor, and an optical temperature sensor in a single multi-optical measurement probe (MOP). Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste (HLW) deep geological disposal technology. In a high-level radioactive disposal project, one of the challenges is the development of methods for long-term monitoring of rock mass behavior. Therefore, in January 2014, the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the developed MOP in the vicinity of 350 m below the surface at the Horonobe Underground Research Center. The measurement results show that AEs occur frequently up to 1.5 m from the wall during excavation. In addition, hydraulic conductivity increased by 2 to 4 orders of magnitude. Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures. Based on this, a conceptual model is developed to represent the excavation damaged zone (EDZ), which contributes to the safe geological disposal of radioactive waste.

JAEA Reports

Long term monitoring and evaluation of the excavation damaged zone induced around the wall of the shaft applying optical fiber sensor (Cooperative research)

Hata, Koji*; Niunoya, Sumio*; Uyama, Masao*; Nakaoka, Kenichi*; Fukaya, Masaaki*; Aoyagi, Kazuhei; Sakurai, Akitaka; Tanai, Kenji

JAEA-Research 2020-010, 142 Pages, 2020/11

JAEA-Research-2020-010.pdf:13.74MB
JAEA-Research-2020-010-appendix(DVD-ROM).zip:149.9MB

In the geological disposal study of high-level radioactive waste, it is suggested that the excavation damaged zone (EDZ) which is created around a tunnel by the excavation will be possible to be one of the critical path of radionuclides. Especially, the progress of cracks in and around the EDZ with time affects the safety assessment of geological disposal and it is important to understand the hydraulic change due to the progress of cracks in and around EDZ. In this collaborative research, monitoring tools made by Obayashi Corporation were installed at a total of 9 locations in the three boreholes near the depth of 370 m of East Shaft at the Horonobe Underground Research Laboratory constructed in the Neogene sedimentary rock. The monitoring tool consists of one set of "optical AE sensor" for measuring of the mechanical rock mass behavior and "optical pore water pressure sensor and optical temperature sensor" for measuring of groundwater behavior. This tool was made for the purpose of selecting and analyzing of AE signal waveforms due to rock fracture during and after excavation of the target deep shaft. As a result of analyzing various measurement data including AE signal waveforms, it is able to understand the information on short-term or long-term progress of cracks in and around EDZ during and after excavation in the deep shaft. In the future, it will be possible to carry out a study that contributes to the long-term stability evaluation of EDZ in sedimentary rocks in the deep part of the Horonobe Underground Research Laboratory by evaluation based on these analytical data.

Journal Articles

Effect of water vapor on re-saturation process in EBS performance of re-saturation process by Thermo-Hydro-Mechanical coupled analysis

Sato, Shin*; Ono, Hirokazu; Tanai, Kenji; Yamamoto, Shuichi*; Fukaya, Masaaki*; Shimura, Tomoyuki*; Niunoya, Sumio*

Jiban Kogaku Janaru (Internet), 15(3), p.529 - 541, 2020/09

no abstracts in English

Journal Articles

Adefining the mechanism of the gas-bubble AE characteristics by two-phase flow test

Niunoya, Sumio*; Hata, Koji*; Uyama, Masao*; Aoyagi, Kazuhei; Tanai, Kenji

Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.92 - 97, 2020/01

Since underground water at the Horonobe Underground Research Laboratory site includes the dissolved gas, it is important to understand the quantitative behavior of AE signal waveform clearly and to develop the criteria of sorting technique. In this report, we tried to perform two types of laboratory tests (Small pipe test and Flat-plate test) in order to obtain detail data of AE signal wave form under two-phase flow. As the result, we could understand that there exists the relationship between the pressure breathing and AE generation, and that the diameter of pipe did not affect the AE behavior.

JAEA Reports

Hydraulic tests for the excavation damaged zone around the 350m niches in the Horonobe Underground Research Project

Yoshino, Hiromitsu*; Samata, Yoichi; Niunoya, Sumio*; Ishii, Eiichi

JAEA-Data/Code 2018-015, 169 Pages, 2019/02

JAEA-Data-Code-2018-015.pdf:16.45MB
JAEA-Data-Code-2018-015-appendix1(DVD-ROM).zip:115.02MB
JAEA-Data-Code-2018-015-appendix2(DVD-ROM).zip:64.3MB
JAEA-Data-Code-2018-015-appendix3(DVD-ROM).zip:27.77MB
JAEA-Data-Code-2018-015-appendix4(DVD-ROM).zip:96.39MB
JAEA-Data-Code-2018-015-appendix5(DVD-ROM).zip:104.89MB

In Horonobe Underground Research Laboratory Project, hydraulic tests for the excavation damaged zone have been performed in order to characterize the hydrological properties of the zone. This report summarized the results of the hydraulic tests and pore-pressure monitoring which have been done by March 2016.

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Consideration of concrete-type plug composition

Nakayama, Masashi; Niunoya, Sumio*; Miura, Norihiko*; Takeda, Nobufumi*

JAEA-Research 2017-016, 62 Pages, 2018/01

JAEA-Research-2017-016.pdf:19.99MB

The Horonobe URL Project has being pursued by JAEA to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, Hokkaido. The URL Project consists of 2 major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies", and proceeds in 3 overlapping phases, over a period of around 20 years. Phase III (Investigations in the underground facilities) investigation was started in 2010 FY. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had started 2013 at GL-350 m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the EBS experiment is acquiring data concerned with THMC coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report shows consideration of concrete-type plug composition. The low alkaline cement developed by JAEA, called HFSC, was used for the plug. HFSC has used in construction test at the gallery as shotcrete in Horonobe URL.

Journal Articles

Study on analysis methodology of AE signal wave at great depth excavation

Niunoya, Sumio*; Hata, Koji*; Uyama, Masao*; Aoyagi, Kazuhei; Wakasugi, Keiichiro

Dai-45-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.226 - 231, 2018/01

The objective of this research is to investigate the long-term hydro-mechanical behavior of rock mass around the shaft in the Horonobe Underground Research Laboratory (URL). The long-term monitoring has been carried out by optical AE sensors, optical water pressure sensors, and optical temperature sensors below 350m depth of the shaft in the Horonobe URL. From the first analytical results, it was too hard to discriminate the uncleared AE wave by using the resonant characteristic. Thus, at this time, we tried to reanalysis by using the half width of spectrum, we could discriminate it correctly as AE from the breaking of rock.

JAEA Reports

In situ stress measurement at the 350 m Loop Gallery East at the Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Niunoya, Sumio*

JAEA-Data/Code 2016-022, 91 Pages, 2017/03

JAEA-Data-Code-2016-022.pdf:7.3MB
JAEA-Data-Code-2016-022-appendix(CD-ROM).zip:232.99MB

The objective of this report is to investigate the three dimensional stress state in the 350 m Loop Gallery (East) at the Horonobe Underground Research Laboratory. For the measurement, three boreholes, which are 17.0 m in length, were drilled. Hydraulic fracturing was applied as a stress measurement method. For the analysis, shut-in pressure of a transverse fractures, reopening pressure of longitudinal fractures and stress condition causing borehole breakouts were integrated into the equation; then stress state was calculated by inversion technique. As a result, considering the stress condition causing breakouts, the value of the maximum principal stress was 3.73 MPa, which is much smaller than the overburden pressure (about 6.0 MPa). The orientation of the maximum horizontal stress is almost vertical. The stress state is normal faulting.

Journal Articles

Long-term evaluation of excavation damaged zone by optical measurement in Horonobe Underground Research Laboratory

Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei

Dai-14-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), 6 Pages, 2017/01

The objective of this research is to investigate the long-term hydro-mechanical behavior of rock mass around the shaft in the Horonobe Underground Research Laboratory (URL). The long-term monitoring has been carried out by optical AE sensors, optical water pressure sensors, and optical temperature sensors below 350m depth of the shaft in the Horonobe URL. From the measurement results, the extent of an excavation damaged zone was 1.5m within the shaft wall. After the excavation, it was observed that the unsaturated zone of the groundwater was spread more than 1.5m within the shaft wall.

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Production of casing drilling machine for large dimeter pit, simulated overpack, buffer material blocks and backfilling materials

Nakayama, Masashi; Matsuzaki, Tatsuji*; Niunoya, Sumio*

JAEA-Research 2016-010, 57 Pages, 2016/08

JAEA-Research-2016-010.pdf:10.81MB
JAEA-Research-2016-010-appendix(CD-ROM).zip:31.42MB

The Horonobe URL Project has being pursued by JAEA to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal -Hydrological - Mechanical - Chemical coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. In this report, It is summarized the production of casing drilling machine for large diameter, simulated overpack, buffer material blocks and backfilling material for EBS experiment.

Journal Articles

Confirmation of the applicability of low alkaline cement-based material in the Horonobe Underground Research Laboratory

Nakayama, Masashi; Niunoya, Sumio*; Minamide, Masashi*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 23(1), p.25 - 30, 2016/06

In Japan, any high-level radioactive waste repository is to be constructed at over 300m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various additives. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly fly-ash contained silicafume cement), containing over 60wt% of silica-fume (SF) and coal ash (FA). JAEA is presently constructing an underground research laboratory (URL) at Horonobe for research and development in the geosciences and repository engineering technology. HFSC was used experimentally as the shotcrete material in construction of part of the 350m deep gallery in Horonobe URL in 2013. The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC in normal concrete. The total length of tunnel constructed using HFSC shotcrete is about 112m at 350m deep drift. The workability of HFSC shotcrete was confirmed by this experimental construction. In this report, we present detailed results of the in-situ construction test.

Journal Articles

Evaluation of EDZ (Excavated Damage Zone) by multi-optical measurement probe in Horonobe Underground Research Center

Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei; Fujita, Tomoo

Dai-44-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.319 - 324, 2016/01

Long-term monitoring and EDZ (Excavated Damage Zone) evaluation is carried out by this multi-optical measurement probe in the depth of 350m vertical shaft of Horonobe Underground Research Center project of the Japan Atomic Energy Agency. We have developed a multi-optical measurement probe incorporating an optical AE sensor, an optical water pressure sensor and an optical temperature sensor. Result of the measurement of AE, water pressure and temperature, it was made clear the influence of the shaft excavation. And from the source location analysis, it was found EDZ was less than 1.5m from shaft wall.

Journal Articles

An Investigation on mechanical properties of in-situ rock mass at the Horonobe Underground Research Laboratory

Niunoya, Sumio*; Aoyagi, Kazuhei; Fujita, Tomoo; Shirase, Mitsuyasu*

Dai-44-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.336 - 341, 2016/01

In the Horonobe Underground Research Laboratory, rock mass classification and determination of mechanical properties of rock mass was conducted considering the effect of the density of fractures in the rock mass. In this paper, the authors report the mechanical properties of rock mass detected by plate loading tests and in situ shear tests in the 250 m and 350 m galleries. As a result, the failure criteria based on the result of in situ shear tests provides the most conservative value for the design of support pattern and assessment of stability of the gallery.

JAEA Reports

In situ stress measurements at the 350m pumping station in the Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Niunoya, Sumio*

JAEA-Data/Code 2015-010, 190 Pages, 2015/10

JAEA-Data-Code-2015-010.pdf:18.7MB
JAEA-Data-Code-2015-010-appendix(CD-ROM).zip:127.68MB

The objective of this report is to investigate the three dimensional stress state in the 350m pumping station at the Horonobe Underground Research Laboratory. For the measurement, four boreholes were drilled; three 20.0m long boreholes and one 6.0m long borehole. Hydraulic fracturing was applied as a stress measurement method. For the analysis, shut-in pressure of a transverse fractures, reopening pressure of longitudinal fractures and stress condition causing borehole breakouts were integrated into the equation; then stress state was calculated by inversion technique. As a result, considering the stress condition causing breakouts, the value of the maximum principal stress was 12 MPa, two times larger than overburden pressure. Furthermore, the ratio between maximum to minimum principal stress was 6. On the other hand, without considering the stress condition causing breakout, the maximum principal stress was 6 MPa; almost same as overburden pressure; the ratio between maximum to minimum principal stress was 2.7, thus the result was almost coincide with the result of surface-based investigation. The orientation of the maximum principal stress was N30W, dipping 45$$^{circ}$$ from vertical axis.

JAEA Reports

In situ stress measurement at the 250m Niche off the West Shaft No.1 in the Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Niunoya, Sumio*

JAEA-Data/Code 2015-012, 171 Pages, 2015/09

JAEA-Data-Code-2015-012.zip:33.31MB
JAEA-Data-Code-2015-012.pdf:28.27MB

The objective of this report is to investigate the three dimensional stress state in the 250 m Niche off the West Shaft No.1 at the Horonobe Underground Research Laboratory. For the measurement, three 20.0m long boreholes were drilled. Hydraulic fracturing was applied as a stress measurement method. For the analysis, shut-in pressure of a transverse fractures, reopening pressure of longitudinal fractures and stress condition causing borehole breakouts were integrated into the equation; then stress state was calculated by inversion technique. As a result of the in situ stress state measurement around the experimental area, the orientation of the maximum principal stress was estimated to be ESE-WNW, dipping 70$$^{circ}$$ from the vertical axis. The orientation of the minimum principal stress was NEN-SWS, dipping 60$$^{circ}$$ from vertical axis. The orientation of the principal stresses is almost coincided with the direction of borehole breakouts and longitudinal crack induced in the boreholes. The values of the maximum and minimum principal stresses were 2.6 MPa and 2.1 MPa, respectively.

JAEA Reports

In situ stress measurement at the 250m Niche off the South Shaft No.1 in the Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Niunoya, Sumio*

JAEA-Data/Code 2015-011, 182 Pages, 2015/09

JAEA-Data-Code-2015-011.pdf:33.41MB
JAEA-Data-Code-2015-011-appendix(CD-ROM).zip:41.95MB

The objective of this report is to investigate the three dimensional stress state in the 250 m Niche off the South Shaft No.1 at the Horonobe Underground Research Laboratory. For the measurement, three 20.0m long boreholes were drilled. Hydraulic fracturing was applied as a stress measurement method. For the analysis, shut-in pressure of a transverse fractures, reopening pressure of longitudinal fractures and stress condition causing borehole breakouts were integrated into the equation; then stress state was calculated by inversion technique. As a result of the in situ stress state measurement around the experimental area, the orientation of the maximum principal stress is estimated to be between E-W and ENE-WSW, dipping almost horizontal direction. This result agrees well with the estimated orientation of the main principal stress, the location of the borehole wall breakouts in 10-E250-M01 and the orientation of the generated crack in 10-E250-M03. The value of the maximum principal stress was 3.97 MPa.

Journal Articles

An Investigation on mechanical properties of in-situ rock mass at the Horonobe Underground Research Laboratory

Tsusaka, Kimikazu*; Inagaki, Daisuke*; Niunoya, Sumio*; Jo, Mayumi*

Proceedings of 8th Asian Rock Mechanics Symposium (ARMS-8) (USB Flash Drive), 9 Pages, 2014/10

Journal Articles

Initial stress measurement by hydraulic fracturing method in diatomaceous mudstone in the Horonobe Underground Research Laboratory

Kondo, Keiji; Tsusaka, Kimikazu; Inagaki, Daisuke; Sugita, Yutaka; Kato, Harumi*; Niunoya, Sumio*

Dai-13-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (CD-ROM), p.583 - 588, 2013/01

no abstracts in English

Journal Articles

Study on dynamic behavior of a shaft excavated through faulted crystalline rock mass

Hashizume, Shigeru; Matsui, Hiroya; Horiuchi, Yasuharu; Hata, Koji*; Akiyoshi, Kenji*; Sato, Shin*; Shibata, Chihoko*; Niunoya, Sumio*; Noda, Masaru*

Dai-13-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (CD-ROM), p.121 - 126, 2013/01

The "Mizunami Underground Research Laboratory" has been studying and developing engineering technology for deep underground applications. These applications are multifaceted and are categorized as development of design and construction planning technology, development construction technology, development countermeasure technology, and development of technology for construction and operation security. In this report, the dynamic stability of shaft and surrounding rock mass has been studied with respect to rock mass displacement and stress, the effect of using a concrete liner and excavating through faulted crystalline rock.

Journal Articles

Application feasibility study of an evaluation technology for long-term rock behavior; Coupled hydraulic and mechanical analyses to evaluate rock behavior of shaft in fault

Noda, Masaru*; Sato, Shin*; Niunoya, Sumio*; Hata, Koji*; Matsui, Hiroya; Mikake, Shinichiro

Dai-41-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.202 - 207, 2012/01

The main shaft of Mizunami URL is located in fault, and due to the geology hydrological anisotropy is observed. Lining deformation may cause by increase of lining stress with degradation of drain material or aquifer of changes in future. Therefore, study on evaluation method to predict the effect by water pressure change is needed. In this study, by implementing coupled hydraulic and mechanical analyses, validity of methods of analysis is considered as compared to measuring for hydrological anisotropy in the main shaft. According to the result of the study, water pressure dependency was not shown, but the main shaft behavior was simulated taking account of hydrological anisotropy. Also validity of methods of coupled hydraulic and mechanical analyses as deterioration prediction was confirmed.

56 (Records 1-20 displayed on this page)