Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of water for the oxygen adsorption on surface of PtCo catalysts

Cui, Y.-T.*; Harada, Yoshihisa*; Niwa, Hideharu*; Oshima, Masaharu*; Hatanaka, Tatsuya*; Nakamura, Naoki*; Ando, Masaki*; Yoshida, Toshihiko*; Ishii, Kenji*; Matsumura, Daiju

NanotechJapan Bulletin (Internet), 11(4), 6 Pages, 2018/08

no abstracts in English

Journal Articles

Observation of momentum-dependent charge excitations in hole-doped cuprates using resonant inelastic X-ray scattering at the oxygen $$K$$ edge

Ishii, Kenji*; Toyama, Takami*; Asano, Shun*; Sato, Kentaro*; Fujita, Masaki*; Wakimoto, Shuichi; Tsutsui, Kenji*; Sota, Shigetoshi*; Miyawaki, Jun*; Niwa, Hideharu*; et al.

Physical Review B, 96(11), p.115148_1 - 115148_8, 2017/09

AA2017-0402.pdf:0.81MB

 Times Cited Count:28 Percentile:78.15(Materials Science, Multidisciplinary)

Journal Articles

Wetting induced oxidation of Pt-based nano catalysts revealed by ${{it in situ}}$ high energy resolution X-ray absorption spectroscopy

Cui, Y.-T.*; Harada, Yoshihisa*; Niwa, Hideharu*; Hatanaka, Tatsuya*; Nakamura, Naoki*; Ando, Masaki*; Yoshida, Toshihiko*; Ishii, Kenji*; Matsumura, Daiju; Oji, Hiroshi*; et al.

Scientific Reports (Internet), 7(1), p.1482_1 - 1482_8, 2017/05

 Times Cited Count:17 Percentile:48.03(Multidisciplinary Sciences)

Journal Articles

Resonant inelastic X-ray scattering study of entangled spin-orbital excitations in superconducting PrFeAsO$$_{0.7}$$

Nomura, Takuji*; Harada, Yoshihisa*; Niwa, Hideharu*; Ishii, Kenji*; Ishikado, Motoyuki*; Shamoto, Shinichi; Jarrige, I.*

Physical Review B, 94(3), p.035134_1 - 035134_9, 2016/07

 Times Cited Count:10 Percentile:44.67(Materials Science, Multidisciplinary)

Low-energy electron excitation spectra were measured on a single crystal of a typical iron-based superconductor PrFeAsO$$_{0.7}$$ using resonant inelastic X-ray scattering (RIXS) at the Fe-$$L_{3}$$ edge.

Journal Articles

Probing carbon edge exposure of iron phthalocyanine-based oxygen reduction catalysts by soft X-ray absorption spectroscopy

Niwa, Hideharu*; Saito, Makoto*; Kobayashi, Masaki*; Harada, Yoshihisa*; Oshima, Masaharu*; Moriya, Shogo*; Matsubayashi, Katsuyuki*; Nabae, Yuta*; Kuroki, Shigeki*; Ikeda, Takashi; et al.

Journal of Power Sources, 223, p.30 - 35, 2013/02

 Times Cited Count:18 Percentile:51.1(Chemistry, Physical)

To design non-platinum, inexpensive, but high performance carbon-based cathode catalysts for polymer electrolyte fuel cells, it is important to elucidate the active site for oxygen reduction reaction (ORR). However, it is difficult to directly identify the active site by applying conventional structural or electronic probes to such complex systems. Here, we used C 1${it s}$ X-ray absorption spectroscopy (XAS) to observe electronic structure of carbon in iron phthalocyanine-based catalysts, and found a signature of edge exposure below the $$pi^{ast}$$ edge, whose intensity is well correlated with the ORR activity. These results demonstrate that C 1${it s}$ XAS can be used to characterize the ORR activity of carbon-based cathode catalysts in terms of the edge exposure.

Journal Articles

Study on the oxygen adsorption property of nitrogen-containing metal-free carbon-based cathode catalysts for oxygen reduction reaction

Kiuchi, Hisao*; Niwa, Hideharu*; Kobayashi, Masaki*; Harada, Yoshihisa*; Oshima, Masaharu*; Chokai, Masayuki*; Nabae, Yuta*; Kuroki, Shigeki*; Kakimoto, Masaaki*; Ikeda, Takashi; et al.

Electrochimica Acta, 82(1), p.291 - 295, 2012/10

 Times Cited Count:14 Percentile:34.63(Electrochemistry)

We study the characteristics of oxygen adsorption on metal-free carbon-based cathode catalysts derived from nitrogen-containing polyamide (PA) and nitrogen-free phenolic resin (PhRs). Electrochemical analysis and Raman spectroscopy showed higher 2-electron oxygen reduction reaction (ORR) activity and more defect sites in PA than PhRs. The increase in the amount of adsorbed oxygen in PA was also identified by oxygen adsorption isotherms. ${it In-situ}$ X-ray photoelectron spectroscopy reveals that graphite-like nitrogen contributes to oxygen adsorption and C=O components are dominant in PA. These experimental results indicate that the adsorbed C=O components near the graphite-like nitrogen can be assigned as active sites for 2-electron ORR.

Journal Articles

Indirect contribution of transition metal towards oxygen reduction reaction activity in iron phthalocyanine-based carbon catalysts for polymer electrolyte fuel cells

Kobayashi, Masaki*; Niwa, Hideharu*; Saito, Makoto*; Harada, Yoshihisa*; Oshima, Masaharu*; Ofuchi, Hironori*; Terakura, Kiyoyuki*; Ikeda, Takashi; Koshigoe, Yuka*; Ozaki, Junichi*; et al.

Electrochimica Acta, 74, p.254 - 259, 2012/07

 Times Cited Count:52 Percentile:81.12(Electrochemistry)

The electronic structure of the residual metal atoms in FePc-based carbon catalysts, prepared by pyrolyzing a mixture of FePc and phenolic resin polymer at 800$$^{circ}$$C, before and after acid washing have been investigated using XAFS spectroscopy to clarify the role of Fe in the ORR activity. The decomposition analyses for the XAFS spectra reveal that the composition ratio of each Fe component is unaltered by the acid washing, indicating that the residual Fe components were removed by the acid washing irrespective of their chemical states. Because the oxygen reduction potential was approximately unchanged by the acid washing, the residual Fe itself does not seem to contribute directly to the ORR activity. The residual Fe can act as a catalyst to accelerate the growth of the sp$$^{2}$$ carbon network during pyrolysis. The results imply that light elements are components of the ORR active sites in the FePc-based carbon catalysts.

Journal Articles

Role of residual transition-metal atoms in oxygen reduction reaction in cobalt phthalocyanine-based carbon cathode catalysts for polymer electrolyte fuel cell

Kobayashi, Masaki*; Niwa, Hideharu*; Harada, Yoshihisa*; Horiba, Koji*; Oshima, Masaharu*; Ofuchi, Hironori*; Terakura, Kiyoyuki*; Ikeda, Takashi; Koshigoe, Yuka*; Ozaki, Junichi*; et al.

Journal of Power Sources, 196(20), p.8346 - 8351, 2011/10

 Times Cited Count:32 Percentile:67.48(Chemistry, Physical)

The electronic structure of Co atoms in CoPc-based carbon catalysts, which were prepared by pyrolyzing a mixture of CoPc and phenol resin polymer up to 1000$$^circ$$C, has been investigated using XAFS analysis and HXPES. The Co K XAFS spectra show that most of the Co atoms are in the metallic state and small quantities of oxidized Co components are present in the samples even after acid washing to remove Co atoms. Based on the difference in probing depth between XAFS and HXPES, it was found that after acid washing, the surface region with the aggregated Co clusters is primarily composed of metallic Co. Since the electrochemical properties remain almost unchanged even after the acid washing process, the residual metallic and oxidized Co atoms themselves will hardly contribute to the ORR activity of the CoPc-based carbon cathode catalysts, implying that the active sites of the CoPc-based catalysts primarily consist of light elements such as C and N.

Journal Articles

X-ray photoemission spectroscopy analysis of N-containing carbon-based cathode catalysts for polymer electrolyte fuel cells

Niwa, Hideharu*; Kobayashi, Masaki*; Horiba, Koji*; Harada, Yoshihisa*; Oshima, Masaharu*; Terakura, Kiyoyuki*; Ikeda, Takashi; Koshigoe, Yuka*; Ozaki, Junichi*; Miyata, Seizo*; et al.

Journal of Power Sources, 196(3), p.1006 - 1011, 2011/02

 Times Cited Count:89 Percentile:91.42(Chemistry, Physical)

We report on the electronic structure of three different types of N-containing carbon-based cathode catalysts for polymer electrolyte fuel cells observed by hard X-ray photoemission spectroscopy. C 1s spectra show the importance of $$sp^{2}$$ carbon network formation for the oxygen reduction reaction (ORR) activity. Samples having high oxygen reduction reaction activity in terms of oxygen reduction potential contain high concentration of graphite-like nitrogen. Based on a quantitative analysis of our results, the oxygen reduction reaction activity of the carbon-based cathode catalysts will be improved by increasing concentration of graphite-like nitrogen in a developed $$sp^{2}$$ carbon network.

Journal Articles

X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells

Niwa, Hideharu*; Horiba, Koji*; Harada, Yoshihisa*; Oshima, Masaharu*; Ikeda, Takashi; Terakura, Kiyoyuki*; Ozaki, Junichi*; Miyata, Seizo*

Journal of Power Sources, 187(1), p.93 - 97, 2009/02

 Times Cited Count:428 Percentile:99.8(Chemistry, Physical)

The electronic structure of nitrogens introduced in various carbon-based cathode catalysts for a polymer electrolyte fuel cell (PEFC) has been investigated using X-ray absorption spectroscopy (XAS). The profile of the $$pi^{ast}$$ peaks at the pre-edge of the N 1s XAS spectra is used to determine the chemical states of nitrogens, which can be a marker of the oxygen reduction reaction (ORR) activity; it is found that catalysts that have relatively high amount of graphite-like nitrogen exhibit higher ORR activity than those having relatively high amount of pyridine-like nitrogen. We propose that effective doping of graphite-like nitrogen is a practical guideline for the synthesis of active carbon alloy catalysts.

10 (Records 1-10 displayed on this page)
  • 1