Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 124

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of coupling technology for high temperature gas-cooled reactors and hydrogen production facility; HTTR heat application test project plan

Ishii, Katsunori; Morita, Keisuke; Noguchi, Hiroki; Aoki, Takeshi; Mizuta, Naoki; Hasegawa, Takeshi; Nagatsuka, Kentaro; Nomoto, Yasunobu; Shimizu, Atsushi; Iigaki, Kazuhiko; et al.

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2023/09

Journal Articles

Validation of evaluation model for analysis of steam reformer in HTGR hydrogen production plant

Ishii, Katsunori; Aoki, Takeshi; Isaka, Kazuyoshi; Noguchi, Hiroki; Shimizu, Atsushi; Sato, Hiroyuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

Journal Articles

Development of safety design philosophy of HTTR-Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Noguchi, Hiroki; Kurahayashi, Kaoru; Yasuda, Takanori; Nomoto, Yasunobu; Iigaki, Kazuhiko; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The safety design philosophy is developed for the HTTR (High Temperature Engineering Test Reactor) heat application test facility connecting high temperature gas-cooled reactor (HTGR) and the hydrogen production plant. The philosophy was proposed to apply proven conventional chemical plant standards to the hydrogen production facility for ensuring public safety against anticipated disasters caused by high pressure and combustible gases. The present study also proposed the safety design philosophy to meet specific safety requirements identified to the nuclear facilities with coupling to the hydrogen production facility such as measures to ensure a capability of normal operation of the nuclear facility against a fire and/or explosion of leaked combustible material, and fluctuation of amount of heat removal occurred in the hydrogen production plant. The safety design philosophy will be utilized to establish its basic and detailed designs of the HTTR-heat application test facility.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and Hydrogen Production Facility, 2; Development plan for coupling equipment between HTTR and Hydrogen Production Facility

Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; Noguchi, Hiroki; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05

Journal Articles

Introduction of loop operating system to improve the stability of continuous hydrogen production for the thermochemical water-splitting iodine-sulfur process

Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Myagmarjav, O.; Kubo, Shinji

International Journal of Hydrogen Energy, 46(55), p.27891 - 27904, 2021/08

 Times Cited Count:4 Percentile:22.37(Chemistry, Physical)

The thermochemical water-splitting iodine-sulfur (IS) process enables producing hydrogen. In a previous operation procedure, after the components of the unit operations were individually started, they were connected at the same time. However, it was challenging to stably interconnect the components. This study introduces a new loop operation, subdividing the process configuration into four sections before transferring the continuous operation. The proposed loop operation was validated analyzing the material and heat balances of each section. The calculated results showed that the material balances of respective loop sections were closed. The loop operation mode would transfer to the continuous operation by connect all sections. Regarding the switching of operation modes, the material and heat balance showed no or little difference, indicating that two operation modes could only be changed by switching the pipelines. Consequently, the loop sections could be individually operated to stabilize the IS process system, and the loop operation could be smoothly transferred to the continuous operation.

Journal Articles

Fabrication, permeation, and corrosion stability measurements of silica membranes for HI decomposition in the thermochemical iodine-sulfur process

Myagmarjav, O.; Shibata, Ai*; Tanaka, Nobuyuki; Noguchi, Hiroki; Kubo, Shinji; Nomura, Mikihiro*; Takegami, Hiroaki

International Journal of Hydrogen Energy, 46(56), p.28435 - 28449, 2021/08

 Times Cited Count:2 Percentile:9.63(Chemistry, Physical)

Journal Articles

Development of a membrane reactor with a closed-end silica membrane for nuclear-heated hydrogen production

Myagmarjav, O.; Tanaka, Nobuyuki; Nomura, Mikihiro*; Noguchi, Hiroki; Imai, Yoshiyuki; Kamiji, Yu; Kubo, Shinji; Takegami, Hiroaki

Progress in Nuclear Energy, 137, p.103772_1 - 103772_7, 2021/07

 Times Cited Count:6 Percentile:72.21(Nuclear Science & Technology)

Journal Articles

Hydrogen production using thermochemical water-splitting iodine-sulfur process test facility made of industrial structural materials; Engineering solutions to prevent iodine precipitation

Noguchi, Hiroki; Kamiji, Yu; Tanaka, Nobuyuki; Takegami, Hiroaki; Iwatsuki, Jin; Kasahara, Seiji; Myagmarjav, O.; Imai, Yoshiyuki; Kubo, Shinji

International Journal of Hydrogen Energy, 46(43), p.22328 - 22343, 2021/06

 Times Cited Count:12 Percentile:59.85(Chemistry, Physical)

An iodine-sulfur process offers the potential for mass producing hydrogen with high-efficiency, and it uses high-temperature heat sources, including HTGR, solar heat, and waste heat of industries. R&D tasks are essential to confirm the integrity of the components that are made of industrial materials and the stability of hydrogen production in harsh working conditions. A test facility for producing hydrogen was constructed from corrosion-resistant components made of industrial materials. For stable hydrogen production, technical issues for instrumental improvements (i.e., stable pumping of the HIx solution, improving the quality control of glass-lined steel, prevention of I$$_{2}$$ precipitation using a water removal technique in a Bunsen reactor) were solved. The entire process was successfully operated for 150 h at the rate of 30 L/h. The integrity of components and the operational stability of the hydrogen production facility in harsh working conditions were demonstrated.

Journal Articles

Thermally altered subsurface material of asteroid (162173) Ryugu

Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.

Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03

 Times Cited Count:43 Percentile:96.93(Astronomy & Astrophysics)

Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 $$^{circ}$$C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200 $$^{circ}$$C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Nanoscale structural analysis of Pb(Mg$$_{1/3}$$Nb$$_{2/3}$$)O$$_3$$

Yoneda, Yasuhiro; Taniguchi, Hiroki*; Noguchi, Yuji*

Journal of Physics; Condensed Matter, 33(3), p.035401_1 - 035401_8, 2021/01

 Times Cited Count:4 Percentile:33.7(Physics, Condensed Matter)

Nanoscale structural analysis of relaxor Pb(Mg$$_{1/3}$$Nb$$_{2/3}$$)O$$_3$$ (PMN) was performed using synchrotron high-energy X-ray diffraction measurements. Although PMN is a well-known relaxor ferroelectric material, the average structure is a cubic structure, and various models have been proposed to explain the ferroelectric microstructure. We performed a wide-range local structure analysis up to 20 nm using the pair distribution function (PDF). As a result, it was found that the structure of PMN changed depending on the distance and it was a glass-like structure.

Journal Articles

Hydriodic iodide and iodine permeation characteristics of fluoropolymers as a lining material

Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Takegami, Hiroaki; Kubo, Shinji

International Journal of Hydrogen Energy, 45(35), p.17557 - 17561, 2020/07

 Times Cited Count:1 Percentile:3.38(Chemistry, Physical)

The thermochemical water-splitting iodine-sulfur (IS) process requires corrosion-resistant materials owing to usage of a mixture of HI-I$$_{2}$$-H$$_{2}$$O. Fluoropolymers, such as PTFE and PFA, are adaptable as lining materials for protecting plant components. However, there has been a concern: PTFE and PFA have the ability to permeate various permeants. From the viewpoint of corrosion, the permeation of HI and I$$_{2}$$ should be evaluated to improve the integrity of the IS process. In this study, permeation tests on PTFE and PFA membranes were performed to measure the permeated fluxes of HI and I$$_{2}$$, and the effects of the operating conditions on them were investigated. The introduction of a permeability parameter could be successful for normalizing the permeated fluxes for a specific membrane thickness and a vapor pressure. Then, the empirical formula of the permeability was given as an Arrhenius-type equation to use as a plant design.

Journal Articles

Reliability improvements of corrosion-resistant equipment for thermochemical water splitting hydrogen production iodine-sulfur process

Kamiji, Yu; Noguchi, Hiroki; Takegami, Hiroaki; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

Nuclear Engineering and Design, 361, p.110573_1 - 110573_6, 2020/05

 Times Cited Count:7 Percentile:66.68(Nuclear Science & Technology)

JAEA has been conducting R&D on the thermochemical iodine-sulfur (IS) process for nuclear-powered hydrogen production. The IS process is one of the promising candidates of heat application of the high-temperature gas-cooled reactors. The glass-lined steel is one of the candidate materials which has both corrosion resistance and structural strength. This paper reveals technical matters to improve reliability of the glass-lined steel equipment. It found that the improved glass-lined steel showed soundness in the process environment from the results of stress analyses for the glass layer by FEM, tests for heat cycle, bending load and corrosion.

Journal Articles

Development of strength evaluation method of ceramic reactor for iodine-sulfur process and hydrogen production test in Japan Atomic Energy Agency

Takegami, Hiroaki; Noguchi, Hiroki; Tanaka, Nobuyuki; Iwatsuki, Jin; Kamiji, Yu; Kasahara, Seiji; Imai, Yoshiyuki; Terada, Atsuhiko; Kubo, Shinji

Nuclear Engineering and Design, 360, p.110498_1 - 110498_6, 2020/04

 Times Cited Count:13 Percentile:86.19(Nuclear Science & Technology)

Japan Atomic Energy Agency (JAEA) has been conducting R&D on the thermochemical iodine-sulfur (IS) process for nuclear-powered hydrogen production. The IS process is one of the promising candidates of heat application of the high-temperature gas-cooled reactors. JAEA fabricated main chemical reactors made of industrial structural materials and confirmed their integrity in practical corrosive environments in the IS process. Based on the results of these confirmation tests, JAEA have constructed a 100 NL/h-H$$_{2}$$-scale test facility made of industrial structural materials. In this report, we succeeded in extending the hydrogen production time from 8 hours to 31 hours by developing a stable hydrogen iodide solution transfer technology in a continuous hydrogen production test. In addition, using the fracture test data of the ceramic specimen, an equation for estimating the strength of the ceramic component was developed.

Journal Articles

Research and development on membrane IS process for hydrogen production using solar heat

Myagmarjav, O.; Iwatsuki, Jin; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ioka, Ikuo; Kubo, Shinji; Nomura, Mikihiro*; Yamaki, Tetsuya*; Sawada, Shinichi*; et al.

International Journal of Hydrogen Energy, 44(35), p.19141 - 19152, 2019/07

 Times Cited Count:16 Percentile:49.6(Chemistry, Physical)

Journal Articles

Local structure analysis of PbTiO$$_3$$ in high-temperature cubic phase

Yoneda, Yasuhiro; Taniguchi, Hiroki*; Kitanaka, Yuki*; Noguchi, Yuji*

Ferroelectrics, 538(1), p.57 - 62, 2019/05

 Times Cited Count:5 Percentile:27.39(Materials Science, Multidisciplinary)

High-energy X-ray diffraction study was performed on lead titanate (PbTiO$$_3$$). Short-range order structure was revealed using atomic pair-distribution function (PDF) method. In the high-temperature cubic phase, there is a large deviation between local and average structure. Especially, Pb atoms deviated from the cubic lattice framework, but establish Pb-O-Pb random network.

Journal Articles

R&D status of hydrogen production test using IS process test facility made of industrial structural material in JAEA

Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

International Journal of Hydrogen Energy, 44(25), p.12583 - 12592, 2019/05

 Times Cited Count:19 Percentile:55.95(Chemistry, Physical)

JAEA has been conducting R&D on thermochemical water-splitting hydrogen production IS process to develop one of heat applications of high-temperature gas-cooled reactor. A test facility was constructed using corrosion-resistant industrial materials to verify integrity of the IS process components and to demonstrate continuous and stable hydrogen production. The performance of components installed in each section was confirmed. Subsequently, a trial operation of integration of the processing sections was successfully carried out for 8 hours with hydrogen production rate of approximately 10 NL/h. After that, hydrogen production operation was extended to 31 hours (approximately hydrogen production rate of 20 NL/h) by introducing a corrosion-resistance pump system with a developed shaft seal technology.

Journal Articles

Current R&D status of thermochemical water splitting hydrogen production iodine-sulfur process in Japan Atomic Energy Agency, 1; Hydrogen production test and component development

Takegami, Hiroaki; Noguchi, Hiroki; Tanaka, Nobuyuki; Iwatsuki, Jin; Kamiji, Yu; Kasahara, Seiji; Imai, Yoshiyuki; Terada, Atsuhiko; Kubo, Shinji

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

Japan Atomic Energy Agency (JAEA) has been conducting R&D on the thermochemical iodine-sulfur (IS) process for nuclear-powered hydrogen production. The IS process is one of the promising candidates of heat application of the high-temperature gas-cooled reactors. JAEA fabricated main chemical reactors made of industrial structural materials and confirmed their integrity in practical corrosive environments in the IS process. Based on the results of these confirmation tests, JAEA have constructed a 100 NL/h-H$$_{2}$$-scale test facility made of industrial structural materials. This report will present an outline and results of hydrogen production tests and reliability improvements of operation stability and components, such as development of a strength estimation method for heat-resistant and corrosion-resistant ceramics components made of silicon carbide.

Journal Articles

Current R&D status of thermochemical water splitting hydrogen production iodine-sulfur process in Japan Atomic Energy Agency, 2; Reliability improvements of corrosion-resistant equipment

Kamiji, Yu; Noguchi, Hiroki; Takegami, Hiroaki; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

Japan Atomic Energy Agency (JAEA) has been conducting R&D on the thermochemical iodine-sulfur (IS) process for nuclear-powered hydrogen production. The IS process is one of the promising candidates of heat application of the HTGR. JAEA achieved continuous hydrogen production for one week with a hydrogen production rate of 30 NL/h by using a test apparatus made of glass and fluororesin material. Subsequently, JAEA fabricated main chemical reactors made of industrial materials and confirmed their integrity in corrosive environments in the IS process. Based on the results, JAEA has constructed a 100 NL/h-H$$_{2}$$-scale test facility made of industrial materials; one of the important materials is the glass-lined steel for corrosion resistant components such as vessels, pipes and protective sheaths of sensors. This report will present technical matters to improve reliability of the glass-lined protective sheaths of thermocouple. In addition, results of quality confirmation will be presented, which are stress analyses for the glass layer by FEM, tests for heat cycle, bending load and corrosion.

124 (Records 1-20 displayed on this page)