Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 172

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of change of aging heat treatment pattern on the JK2LB jacket for the ITER central solenoid

Ozeki, Hidemasa; Saito, Toru; Kawano, Katsumi; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Yamazaki, Toru; Isono, Takaaki

Physics Procedia, 67, p.1010 - 1015, 2015/07

 Times Cited Count:3 Percentile:73.28(Physics, Applied)

Journal Articles

Non-destructive examination of jacket sections for ITER central solenoid conductors

Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200904_1 - 4200904_4, 2015/06

 Times Cited Count:3 Percentile:20.23(Engineering, Electrical & Electronic)

The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 Nb$$_{3}$$Sn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.

Journal Articles

Behavior of Nb$$_{3}$$Sn cable assembled with conduit for ITER central solenoid

Nabara, Yoshihiro; Suwa, Tomone; Takahashi, Yoshikazu; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200305_1 - 4200305_5, 2015/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Journal Articles

Development of ITER superconducting coil in Japan

Koizumi, Norikiyo; Nunoya, Yoshihiko

FSST News, (143), p.6 - 10, 2014/10

no abstracts in English

Journal Articles

Optimization of heat treatment of Japanese Nb$$_3$$Sn conductors for toroidal field coils in ITER

Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Suwa, Tomone; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Koizumi, Norikiyo; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.6000605_1 - 6000605_5, 2014/06

 Times Cited Count:7 Percentile:39.51(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Establishment of production process of JK2LB jacket section for ITER CS

Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Teshima, Osamu*; Matsunami, Masahiro*

IEEE Transactions on Applied Superconductivity, 24(3), p.4800604_1 - 4800604_4, 2014/06

 Times Cited Count:16 Percentile:62.24(Engineering, Electrical & Electronic)

Journal Articles

Cabling technology of Nb$$_3$$Sn conductor for ITER central solenoid

Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Uno, Yasuhiro; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.4802404_1 - 4802404_4, 2014/06

 Times Cited Count:25 Percentile:72.88(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_3$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 mm show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.

Journal Articles

Residual strains in ITER conductors by neutron diffraction

Harjo, S.; Hemmi, Tsutomu; Abe, Jun; Gong, W.; Nunoya, Yoshihiko; Aizawa, Kazuya; Ito, Takayoshi*; Koizumi, Norikiyo; Machiya, Shutaro*; Osamura, Kozo*

Materials Science Forum, 777, p.84 - 91, 2014/02

 Times Cited Count:2 Percentile:72.7(Materials Science, Multidisciplinary)

Journal Articles

Progress of ITER and JT-60SA magnet development in Japan

Koizumi, Norikiyo; Nunoya, Yoshihiko; Yoshida, Kiyoshi; Barabaschi, P.*

Physics Procedia, 58, p.232 - 235, 2014/00

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Investigation of degradation mechanism of ITER CS conductor sample using TAKUMI

Hemmi, Tsutomu; Harjo, S.; Kajitani, Hideki; Nabara, Yoshihiro; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Koizumi, Norikiyo; Abe, Jun; Gong, W.; Aizawa, Kazuya; et al.

KEK Progress Report 2013-4, p.45 - 47, 2013/11

The gradual degradation was observed in the results for ITER CS conductor samples. To investigate its origin, the internal strain in the sample after the testing was successfully measured using a neutron diffraction technique non-destructively. Up to now, the transverse electromagnetic loading has been considered as an origin of the degradation due to the local bending at the high loading side (HLS). However, as a result of the neutron diffraction measurement, the large bending at the LLS of the HFZ was found. The large bending was considered as an origin of the strand buckling due to the large void generated by the transverse electromagnetic loading and the thermally induced residual compressive strain. For the improvement of the conductor performance on the strand buckling, the shorter twisting pitch (STP) can be considered. The result of the SULTAN testing of the conductor sample with STP found very effective, and the performance degradation was negligible.

Journal Articles

Neutron diffraction measurement of internal strain in the first Japanese ITER CS conductor sample

Hemmi, Tsutomu; Harjo, S.; Nunoya, Yoshihiko; Kajitani, Hideki; Koizumi, Norikiyo; Aizawa, Kazuya; Machiya, Shutaro*; Osamura, Kozo*

Superconductor Science and Technology, 26(8), p.084002_1 - 084002_6, 2013/08

 Times Cited Count:16 Percentile:55.44(Physics, Applied)

JAEA has responsibly to procure all ITER CS conductors. Several conductor samples was fabricated and tested. From the result of the cyclic testing in first conductor sample named JACS01 and second conductor sample named JACS02, the continuous linear degradation of the current sharing temperature ($$T$$$$_{cs}$$) was observed. To investigate the $$T$$$$_{cs}$$ degradation, the visual inspection of JACS01 right leg was performed. As a result, the large deflection at the lower loading side (LLS) in the high field zone (HFZ) was observed. The bending strain of the strands cannot be evaluated from the only deflection obtained by a visual inspection. To evaluate the strain of strands in the conductor sample quantitatively, the neutron diffraction measurement of JACS01 left leg was performed using the engineering materials diffractometer in J-PARC. From the result, the large bending strain at the LLS in the HFZ was observed. Therefore, the degraded position in the conductor sample can be determined.

Journal Articles

Cable twist pitch variation in Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Matsui, Kunihiro; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.4801504_1 - 4801504_4, 2013/06

 Times Cited Count:11 Percentile:50.58(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.

Journal Articles

Examination of Nb$$_{3}$$Sn conductors for ITER central solenoids

Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Matsui, Kunihiro; Koizumi, Norikiyo; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.4801604_1 - 4801604_4, 2013/06

 Times Cited Count:10 Percentile:48(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Test results of ITER conductors in the SULTAN facility

Bruzzone, P.*; Stepanov, B.*; Wesche, R.*; Mitchell, N.*; Devred, A.*; Nunoya, Yoshihiko; Tronza, V.*; Kim, K.*; Boutboul, T.*; Martovetsky, N.*; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

Starting March 2007, over 60 ITER cable-in-conduit conductors (CICC) have been tested in the SULTAN test facility, Switzerland. For the NbTi CICC, the results confirm the prediction from the strand data, which are made taking the peak field over the conductor cross section as operating field. All the NbTi samples passed the supplier qualification phase. For the Nb$$_{3}$$Sn CICC, the performance prediction is not straightforward because of the irreversible degradation caused by filament damage occurring during cyclic loading. At the first run of the test campaign, the performance of all the Nb$$_{3}$$Sn samples largely meets the target for all the tested samples. Contrary to the NbTi CICC case, the n-index of the transition is substantially lower than in the strands, providing evidence of irreversible degradation. The performance loss upon load cycles and thermal cycles has a broad range among the various conductor samples.

Journal Articles

ITER magnet systems; From qualification to full scale construction

Nakajima, Hideo; Hemmi, Tsutomu; Iguchi, Masahide; Nabara, Yoshihiro; Matsui, Kunihiro; Chida, Yutaka; Kajitani, Hideki; Takano, Katsutoshi; Isono, Takaaki; Koizumi, Norikiyo; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

The ITER organization and 6 Domestic Agencies (DA) have been implementing the construction of ITER superconducting magnet systems. Four DAs have already started full scale construction of Toroidal Field (TF) coil conductors. The qualification of the radial plate manufacture has been completed, and JA and EU are ready for full scale construction. JA has qualified full manufacturing processes of the winding pack with a 1/3 prototype and made 2 full scale mock-ups of the basic segments of TF coil structure to optimize and industrialize the manufacturing process. Preparation and qualification of the full scale construction of the TF coil winding is underway by EU. Procurement of the manufacturing equipment is near completion and qualification of manufacturing processes has already started. The constructions of other components of the ITER magnet systems are also going well towards the main goal of the first plasma in 2020.

Journal Articles

Method to evaluate CIC conductor performance by voltage taps using CSMC facility

Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Koizumi, Norikiyo; Nakajima, Hideo

IEEE Transactions on Applied Superconductivity, 22(3), p.4803804_1 - 4803804_4, 2012/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Mass production of Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4801904_1 - 4801904_4, 2012/06

 Times Cited Count:7 Percentile:41.4(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency is the first to start the mass production of the TF conductors in Phase IV in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The conductor is cable-in-conduit conductor with a central spiral. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and then wrapped with stainless steel tape whose thickness is 0.1 mm. Approximately 60 tons of Nb$$_{3}$$Sn strands were manufactured by the two suppliers in December 2010. This amount corresponds to approximately 55% of the total contribution from Japan. Approximately 30% of the total contribution from Japan was completed as of February 2011. JAEA is manufacturing one conductor per month under a contract with two Japanese companies for strands, one company for cabling and one company for jacketing. This paper summarizes the technical developments including a high-level quality assurance. This progress is a significant step in the construction of the ITER machine.

Journal Articles

Preparation for the ITER central solenoid conductor manufacturing

Hamada, Kazuya; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Kawano, Katsumi; Saito, Toru; Oshikiri, Masayuki; Uno, Yasuhiro; Koizumi, Norikiyo; Nakajima, Hideo; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4203404_1 - 4203404_4, 2012/06

 Times Cited Count:17 Percentile:63.98(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) has the responsibility for procurement of all of the ITER central solenoid (CS) conductor lengths. The CS conductor is composed of 576 Nb$$_{3}$$ Sn superconducting strands and 288 Cu strands assembled together into a multistage cable and protected by a circle-in-square sheath tube (jacket) with the outer dimension of 49 mm. In preparation for CS conductor production, the following R&D activities have been performed; (1) Mechanical tests at 4 K have been performed for jacket candidate materials such as 316LN and JK2LB, (2) Welding test for filler selection, (3) Measurement of coefficient of sliding friction using a 100-m long dummy cable, (4) Deformation characteristics of the conductor cross section after compaction and spooling. As a result of these R&D, the CS conductor jacket manufacturing technologies have been confirmed to start the procurement of the CS conductor.

Journal Articles

Test results and investigation of Tcs degradation in Japanese ITER CS conductor samples

Hemmi, Tsutomu; Nunoya, Yoshihiko; Nabara, Yoshihiro; Yoshikawa, Masatoshi*; Matsui, Kunihiro; Kajitani, Hideki; Hamada, Kazuya; Isono, Takaaki; Takahashi, Yoshikazu; Koizumi, Norikiyo; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4803305_1 - 4803305_5, 2012/06

 Times Cited Count:45 Percentile:85.83(Engineering, Electrical & Electronic)

To characterize the performance of the CS conductor, a CS conductor sample was tested in the SULTAN facility at CRPP. As a result of the cyclic test up to 1000 cycles, measured Tcs was in good agreement with the expected Tcs, which is calculated by the characteristics of the Nb$$_{3}$$Sn strands and the designed strain. However, continuous degradation of Tcs was observed after 1000 cycles. The degradation of Tcs was around 0.6 K from 1000 cycles to 6000 cycles. On the other hand, the degradation of Tcs by cyclic operation is nearly 0.1 K from 1000 cycles to 10,000 cycles in the CS Insert test at JAEA in 2000. To investigate the causes for the degradation of Tcs, the following items are performed; (1) strain measurement by neutron diffraction, (2) strain measurement by sample cuttings, (3) strand position observation, (4) visual inspection on strands, (5) filament breakage observation, (6) modeling and calculation of the degradation. Detailed results will be presented and discussed.

Journal Articles

Examination of Japanese mass-produced Nb$$_3$$Sn conductors for ITER toroidal field coils

Nabara, Yoshihiro; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Takahashi, Yoshikazu; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Ebisawa, Noboru; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4804804_1 - 4804804_4, 2012/06

 Times Cited Count:18 Percentile:65.46(Engineering, Electrical & Electronic)

no abstracts in English

172 (Records 1-20 displayed on this page)