Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 30

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Electronic states in EuCu$$_2$$(Ge$$_{1-x}$$Si$$_x$$)$$_2$$ based on the doniach phase diagram

Iha, Wataru*; Yara, Tomoyuki*; Ashitomi, Yosuke*; Kakihana, Masashi*; Takeuchi, Tetsuya*; Honda, Fuminori*; Nakamura, Ai*; Aoki, Dai*; Gochi, Jun*; Uwatoko, Yoshiya*; et al.

Journal of the Physical Society of Japan, 87(6), p.064706_1 - 064706_14, 2018/06

 Times Cited Count:19 Percentile:75.67(Physics, Multidisciplinary)

Journal Articles

Retreat from stress; Rattling in a planar coordination

Suekuni, Koichiro*; Lee, C. H.*; Tanaka, Hiromi*; Nishibori, Eiji*; Nakamura, Atsushi*; Kasai, Hidetaka*; Mori, Hitoshi*; Usui, Hidetomo*; Ochi, Masayuki*; Hasegawa, Takumi*; et al.

Advanced Materials, 30(13), p.1706230_1 - 1706230_6, 2018/03

 Times Cited Count:51 Percentile:89.35(Chemistry, Multidisciplinary)

Thermoelectric materials for highly efficient devices must satisfy conflicting requirements of high electrical conductivity and low thermal conductivity. In this paper, we studied the crystal structure and phonon dynamics of tetrahedrites (Cu,Zn)$$_{12}$$(Sb,As)$$_{4}$$S$$_{13}$$. The results revealed that the Cu atoms in a planar coordination are rattling, which effectively scatter phonons. These findings provide a new strategy for the development of highly efficient thermoelectric materials with planar coordination.

Journal Articles

Experimental determination of the topological phase diagram in Cerium monopnictides

Kuroda, Kenta*; Ochi, Masayuki*; Suzuki, Hiroyuki*; Hirayama, Motoaki*; Nakayama, Mitsuhiro*; Noguchi, Ryo*; Bareille, C.*; Akebi, Shuntaro*; Kunisada, So*; Muro, Takayuki*; et al.

Physical Review Letters, 120(8), p.086402_1 - 086402_6, 2018/02

 Times Cited Count:50 Percentile:91.96(Physics, Multidisciplinary)

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2013 - March 31, 2014)

Sato, Takeshi; Muto, Shigeo; Akiyama, Kiyomitsu; Aoki, Kazufumi; Okamoto, Akiko; Kawakami, Takeshi; Kume, Nobuhide; Nakanishi, Chika; Koie, Masahiro; Kawamata, Hiroyuki; et al.

JAEA-Review 2014-048, 69 Pages, 2015/02

JAEA-Review-2014-048.pdf:13.91MB

JAEA was assigned as a designated public institution under the Disaster Countermeasures Basic Act and under the Armed Attack Situations Response Act. Based on these Acts, the JAEA has the responsibility of providing technical support to the national government and/or local governments in case of disaster responses or response in the event of a military attack, etc. In order to fulfill the tasks, the JAEA has established the Emergency Action Plan and the Civil Protection Action Plan. In case of a nuclear emergency, NEAT dispatches specialists of JAEA, supplies the national government and local governments with emergency equipment and materials, and gives technical advice and information. In normal time, NEAT provides various exercises and training courses concerning nuclear disaster prevention to those personnel taking an active part in emergency response institutions of the national and local governments, police, fire fighters, self-defense forces, etc. in addition to the JAEA itself. The NEAT also researches nuclear disaster preparedness and response, and cooperates with international organizations. In the FY2013, the NEAT accomplished the following tasks: (1) Technical support activities as a designated public institution in cooperation with the national and local governments, etc. (2) Human resource development, exercise and training of nuclear emergency response personnel for the national and local governments, etc. (3) Researches on nuclear disaster preparedness and response, and sending useful information (4) International contributions to Asian countries on nuclear disaster preparedness and response in collaboration with the international organizations

Journal Articles

High power laser developments with femtosecond to nanosecond pulse durations for laser shock science and engineering

Kiriyama, Hiromitsu; Mori, Michiaki; Suzuki, Masayuki*; Daito, Izuru*; Okada, Hajime; Ochi, Yoshihiro; Tanaka, Momoko; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; et al.

Reza Kenkyu, 42(6), p.441 - 447, 2014/06

We describe three specific high power laser systems that are being developed in our laboratory for many applications in high field science, nonlinear optics and material processing. We report on a femtosecond petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 20 J of 40 fs pulse duration, a picosecond high intensity Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 mJ of 0.5 ps pulse duration, and a nanosecond high repetition rate Nd:YAG laser system that can provide an average power of 360 W with a pulse duration of 30 ns delivered at a 1 kHz repetition rate. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2012 - March 31, 2013)

Sato, Takeshi; Muto, Shigeo; Okuno, Hiroshi; Katagiri, Hiromi; Akiyama, Kiyomitsu; Okamoto, Akiko; Koie, Masahiro; Ikeda, Takeshi; Nemotochi, Toshimasa; Saito, Toru; et al.

JAEA-Review 2013-046, 65 Pages, 2014/02

JAEA-Review-2013-046.pdf:11.18MB

When a nuclear emergency occurs in Japan, the Japan Atomic Energy Agency (JAEA) has the responsibility of providing technical support to the National government, local governments, police, fire stations and nuclear operators etc., because the JAEA has been designated as the Designated Public Institution under the Basic Act on Disaster Control Measures and the Act on Response to Armed Attack Situations, etc.. The Nuclear Emergency Assistance and Training Center (NEAT) of JAEA provides a comprehensive range of technical support activities to an Off-Site Center in case of a nuclear emergency. Specifically, NEAT gives technical advice and information, dispatches specialists as required, and supplies the National Government and local governments with emergency equipments and materials. NEAT provides various exercise and training courses concerning nuclear disaster prevention to those personnel taking an active part in emergency response organizations at normal times. The tasks of NEAT, with its past experiences as a designated public institution including the responses to TEPCO's Fukushima Accident, have been shifted to technical supports to the national government for strengthening its abilities to emergency responses; the NEAT therefore focused on maintenance and operation of its functions, and strengthening its response abilities in cooperation with the national government. This annual report summarized these activities of JAEA/NEAT in the fiscal year 2012.

Journal Articles

High-speed classification of coherent X-ray diffraction Patterns on the K computer for high-resolution single biomolecule imaging

Tokuhisa, Atsushi*; Arai, Junya*; Jochi, Yasumasa*; Ono, Yoshiyuki*; Kameyama, Toyohisa*; Yamamoto, Keiji*; Hatanaka, Masayuki*; Gerofi, B.*; Shimada, Akio*; Kurokawa, Motoyoshi*; et al.

Journal of Synchrotron Radiation, 20(6), p.899 - 904, 2013/11

 Times Cited Count:5 Percentile:29.23(Instruments & Instrumentation)

Journal Articles

High intensity, high temporal contrast, high repetition-rate laser for laser driven particle acceleration

Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Ochi, Yoshihiro; Sato, Masatoshi*; Yoshii, Takehiro*; Tamaoki, Yoshinori*; Maeda, Junya*; Matsuoka, Shinichi*; et al.

AIP Conference Proceedings 1465, p.53 - 57, 2012/07

 Times Cited Count:0 Percentile:0.13(Physics, Applied)

We have reported hundred mJ level, femtosecond pulse duration with the high temporal contrast in an OPCPA/Yb:YAG ceramic thin disk laser system at 10 Hz repetition rate. At an input laser pulse energy of 3.8 mJ from the OPCPA preamplifer the output energy of 130 mJ with spectral bandwidth of 2.5 nm has been obtained from multipass Yb:YAG ceramic thin disk amplifier, and the optical efficiency from LD energy to amplified laser pulse is 9.6%. The recompressed laser pulse duration was measured to be 450 fs. Because the compressor efficiency exceeds 73% the compressed pulse energy can potentially be as high as 95 mJ. The contrast level of this laser pulse was measured to be less than 7.2$$times$$10$$^{-9}$$ at -150 ps. This novel laser system after further amplification using additional amplifiers can be useful for the laser-driven proton acceleration in future.

Journal Articles

Development of a compact high-spatiotemporal-quality Yb:YAG thin-disk laser system using an optical parametric preamplifier

Kiriyama, Hiromitsu; Suzuki, Masayuki*; Daito, Izuru; Okada, Hajime; Ochi, Yoshihiro; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; Maeda, Junya*; Matsuoka, Shinichi*; et al.

Reza Kenkyu, 40(2), p.143 - 145, 2012/02

We demonstrate a compact, high-spatiotemporal-quality, high-intensity diode-pumped Yb:YAG thin-disk chirped-pulse amplification (CPA) laser system that incorporates a nonlinear preamplifier based on optical parametric chirped-pulse amplification (OPCPA). The stretched pulses are amplified in the OPCPA preamplifier and the following Yb:YAG main amplifier to $$sim$$100 mJ at 10 Hz. The broadband amplified beam quality of 1.1 (horizontal direction) and 1.4 (vertical direction) times diffraction limited and pulse compression down to 470 fs with contrast of better than 10$$^{-8}$$ have been achieved successfully.

Journal Articles

Hundred mJ, sub-picoseconds, high temporal contrast OPCPA/Yb:YAG ceramic thin disk hybrid laser system

Suzuki, Masayuki*; Kiriyama, Hiromitsu; Daito, Izuru; Ochi, Yoshihiro; Okada, Hajime; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; Maeda, Junya*; Matsuoka, Shinichi*; et al.

Applied Physics B, 105(2), p.181 - 184, 2011/11

 Times Cited Count:5 Percentile:28.65(Optics)

We have demonstrated an OPCPA/Yb:YAG ceramic thin disk hybrid laser system having hundred mJ level pulse energy sub-picosecond pulse duration with high temporal contrast. At an input energy of 3.8 mJ from an OPCPA preamplifier an output energy of 130 mJ was obtained from Yb:YAG ceramic thin disk amplifier. A recompressed pulse duration of 450 fs with a contrast level of less than 7.2$$times$$10$$^-9$$ was obtained. The contrast level is the highest value achieved in Yb:YAG chirped pulse amplification (CPA) laser system with hundred mJ level.

Journal Articles

Development of a high-contrast, high beam-quality, high-intensity laser

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki*; Shimomura, Takuya; Sasao, Hajime*; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Kondo, Shuji; Kanazawa, Shuhei; et al.

Reza Kenkyu, 38(9), p.669 - 675, 2010/09

This paper reviews the temporal contrast and spatial beam quality improvement techniques in a high intensity Ti:sapphire laser system that is based on chirped-pulse amplification (CPA). We describe a low gain optical parametric chirped-pulse amplification (OPCPA) preamplifier that uses high energy, clean pulse seeding and is shown to significantly improve the contrast to better than 10$$^{-10}$$-10$$^{-11}$$ relative to the peak of the main femtosecond pulse. We also report the use of a diffractive optical element for beam homogenization of a 100 J level Nd:glass green pump laser, achieving a flat-topped spatial profile with a filling factor near 80 %.

Journal Articles

High-contrast (10$$^{10}$$), high-intensity (500 TW) J-KAREN laser system

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Sasao, Hajime; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; et al.

JAEA-Conf 2010-002, p.18 - 21, 2010/06

We have developed a femtosecond high intensity laser system, which combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) techniques, that produces more than 30 J broadband output energy, indicating the potential for achieving peak powers in excess of 500 TW. With a cleaned high-energy seeded OPCPA preamplifier as a front-end in the system, for the final compressed pulse (without pumping the booster amplifier) we found that the temporal contrast in this system exceeds 10$$^{10}$$ on the sub-nanosecond timescale, and is near 10$$^{12}$$ on the nanosecond timescale before the main femtosecond pulse. Using diffractive optical elements for beam homogenization of 100-J level high-energy Nd:glass green pump laser in a Ti:sapphire final amplifier, we have successfully generated broadband high-energy output with near-perfect top-hat intensity distributions.

Journal Articles

High spatiotemporal-quality petawatt-class laser system

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Sasao, Hajime; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; et al.

Applied Optics, 49(11), p.2105 - 2115, 2010/04

 Times Cited Count:39 Percentile:83.7(Optics)

We have developed a femtosecond high intensity laser system, which combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) techniques, that produces more than 30-J broadband output energy, indicating the potential for achieving peak powers in excess of 500-TW. With a cleaned high-energy seeded OPCPA preamplifier as a front-end in the system, for the compressed pulse without pumping the final amplifier we found that the temporal contrast in this system exceeds 10$$^{10}$$ on the sub-nanosecond timescales, and is near 10$$^{12}$$ on the nanosecond timescale prior to the peak of the main femtosecond pulse. Using diffractive optical elements for beam homogenization of 100-J level high-energy Nd:glass green pump laser in a Ti:sapphire final amplifier, we have successfully generated broadband high-energy output with a near-perfect top-hat-like intensity distribution.

Journal Articles

Electronic structure of Ga$$_{1-x}$$Cr$$_{x}$$N and Si-doping effects studied by photoemission and X-ray absorption spectroscopy

Song, G.*; Kobayashi, Masaki*; Hwang, J. I.*; Kataoka, Takashi*; Takizawa, Masaru*; Fujimori, Atsushi; Okochi, Takuo; Takeda, Yukiharu; Okane, Tetsuo; Saito, Yuji; et al.

Physical Review B, 78(3), p.033304_1 - 033304_4, 2008/07

 Times Cited Count:8 Percentile:37.3(Materials Science, Multidisciplinary)

Journal Articles

EPR study of electron-irradiated SiC; Structure determination of intrinsic defects in 4$$H$$-SiC

Isoya, Junichi*; Umeda, Takahide*; Mizuochi, Norikazu*; Katagiri, Masayuki*; Oshima, Takeshi; Morishita, Norio; Ito, Hisayoshi

JAEA-Review 2006-042, JAEA Takasaki Annual Report 2005, P. 15, 2007/02

no abstracts in English

Journal Articles

Progress of the ITER central solenoid model coil programme

Tsuji, Hiroshi; Okuno, Kiyoshi*; Thome, R.*; Salpietro, E.*; Egorov, S. A.*; Martovetsky, N.*; Ricci, M.*; Zanino, R.*; Zahn, G.*; Martinez, A.*; et al.

Nuclear Fusion, 41(5), p.645 - 651, 2001/05

 Times Cited Count:57 Percentile:83.02(Physics, Fluids & Plasmas)

no abstracts in English

Oral presentation

High intensity, high beam quality laser pulses with a double CPA, OPCPA/Ti:sapphire laser system for studying relativistic light-matter interactions

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; Kanazawa, Shuhei; Sagisaka, Akito; Daito, Izuru; et al.

no journal, , 

We demonstrated laser peak intensity above 10$$^{20}$$W/cm$$^2$$ and temporal contrast exceeding 10$$^{10}$$ at a 10 Hz repetition rate with a 60 TW, 30 fs laser (J-KAREN laser). Here we report the upgrade of the J-KAREN laser to the petawatt peak power level. This is accomplished by adding a Ti:sapphire booster amplifier downstream of the final amplifier chain of the 60 TW J-KAREN laser system. Stretched pulses of energy 3 J from the previous J-KAREN laser are up-collimated and introduced into the final booster amplifier. The booster amplifier consists of a large-aperture Ti:sapphire crystal pumped by a frequency-doubled Nd:silicate glass laser with pulse energy 60 J. Diffractive optical elements are used for pump beam homogenization to maintain a uniform spatial profile and reliable, damage-free operation. The system produces an uncompressed output pulse energy exceeding 30 J with a near homogeneous flat-top spatial distribution, indicating potential peak power of 500 TW.

Oral presentation

Applicability of differential pulse voltammetry in fluidic condition

Arai, Yoichi; Takeuchi, Masayuki; Okochi, Haruo; Kato, Toshihiro*; Kase, Takeshi; Nakajima, Yasuo

no journal, , 

no abstracts in English

Oral presentation

Demonstration of high peak power, high contrast OPCPA/Ti:sapphire hybrid laser system

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; Kanazawa, Shuhei; Sagisaka, Akito; Daito, Izuru; et al.

no journal, , 

We have demonstrated over 30 J broadband output energy based on optical parametric chirped-pulse amplification (OPCPA) and Ti:sapphire chirped-pulse amplification (CPA), indicating potential for peak power of 500 TW with extremely high temporal contrast.

Oral presentation

High contrast, high beam quality, PW-class J-KAREN laser

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Sasao, Hajime; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; et al.

no journal, , 

We have developed a femtosecond high intensity laser system, which combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) techniques, that produces more than 30 J broadband output energy, indicating the potential for achieving peak powers in excess of 500 TW. With a cleaned high-energy seeded OPCPA preamplifier as a front-end in the system, for the final compressed pulse we found that the temporal contrast in this system exceeds 10$$^{10}$$ on the sub-nanosecond timescale before the main femtosecond pulse. Using diffractive optical elements for beam homogenization of 100-J level high-energy Nd:glass green pump laser in a Ti:sapphire final amplifier, we have successfully generated broadband high-energy output with near-perfect top-hat intensity distributions.

30 (Records 1-20 displayed on this page)