Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 30

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quasifree neutron knockout reaction reveals a small $$s$$-Orbital component in the Borromean nucleus $$^{17}$$B

Yang, Z. H.*; Kubota, Yuki*; Corsi, A.*; Yoshida, Kazuki; Sun, X.-X.*; Li, J. G.*; Kimura, Masaaki*; Michel, N.*; Ogata, Kazuyuki*; Yuan, C. X.*; et al.

Physical Review Letters, 126(8), p.082501_1 - 082501_8, 2021/02

AA2020-0819.pdf:1.29MB

 Times Cited Count:43 Percentile:96.7(Physics, Multidisciplinary)

A quasifree ($$p$$,$$pn$$) experiment was performed to study the structure of the Borromean nucleus $$^{17}$$B, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for $$1s_{1/2}$$ and $$0d_{5/2}$$ orbitals, and a surprisingly small percentage of 9(2)% was determined for $$1s_{1/2}$$. Our finding of such a small $$1s_{1/2}$$ component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in $$^{17}$$B. The present work gives the smallest $$s$$- or $$p$$-orbital component among known nuclei exhibiting halo features and implies that the dominant occupation of $$s$$ or $$p$$ orbitals is not a prerequisite for the occurrence of a neutron halo.

Journal Articles

How different is the core of $$^{25}$$F from $$^{24}$$O$$_{g.s.}$$ ?

Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri, A.*; Hwang, S. H.*; et al.

Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05

 Times Cited Count:14 Percentile:74.18(Physics, Multidisciplinary)

The structure of a neutron-rich $$^{25}$$F nucleus is investigated by a quasifree ($$p,2p$$) knockout reaction. The sum of spectroscopic factors of $$pi 0d_{5/2}$$ orbital is found to be 1.0 $$pm$$ 0.3. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus, and the core consists of $$sim$$35% $$^{24}$$O$$_{rm g.s.}$$, and $$sim$$65% excited $$^{24}$$O. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus. The result may infer that the addition of the $$0d_{5/2}$$ proton considerably changes the neutron structure in $$^{25}$$F from that in $$^{24}$$O, which could be a possible mechanism responsible for the oxygen dripline anomaly.

Journal Articles

Shell structure of the neutron-rich isotopes $$^{69,71,73}$$Co

Lokotko, T.*; Leblond, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Poves, A.*; Nowacki, F.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Authelet, G.*; et al.

Physical Review C, 101(3), p.034314_1 - 034314_7, 2020/03

 Times Cited Count:10 Percentile:69.78(Physics, Nuclear)

The structures of the neutron-rich $$^{69,71,73}$$Co isotopes were investigated via ($$p,2p$$) knockout reactions at the Radioactive Isotope Beam Factory, RIKEN. Level schemes were reconstructed using the $$gamma-gamma$$ coincidence technique, with tentative spin-parity assignments based on the measured inclusive and exclusive cross sections. Comparison with shell-model calculations suggests coexistence of spherical and deformed shapes at low excitation energies in the $$^{69,71,73}$$Co isotopes.

Journal Articles

Nuclear structure of $$^{76}$$Ni from the ($$p$$,$$2p$$) reaction

Elekes, Z.*; Kripk$'o$, $'A$*; Sohler, D.*; Sieja, K.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Doornenbal, P.*; Obertelli, A.*; Authelet, G.*; Baba, Hidetada*; et al.

Physical Review C, 99(1), p.014312_1 - 014312_7, 2019/01

 Times Cited Count:10 Percentile:64.15(Physics, Nuclear)

The nuclear structure of the $$^{76}$$Ni nucleus was investigated by ($$p$$,$$2p$$) reaction using a NaI(Tl) array to detect the deexciting prompt $$gamma$$ rays. A new transition with an energy of 2227 keV was identified by $$gamma gamma$$ and $$gamma gamma gamma$$ coincidences. Our shell-model calculations using the Lenzi, Nowacki, Poves, and Sieja interaction produced good candidates for the experimental proton hole states in the observed energy region, and the theoretical cross sections showed good agreement with the experimental values. Although we could not assign all the experimental states to the theoretical ones unambiguously, the results are consistent with a reasonably large Z = 28 shell gap for nickel isotopes in accordance with previous studies.

Journal Articles

Spatial anisotropy of neutrons emitted from the $$^{56}$$Fe($$gamma$$, n)$$^{55}$$Fe reaction with a linearly polarized $$gamma$$-ray beam

Hayakawa, Takehito; Shizuma, Toshiyuki; Miyamoto, Shuji*; Amano, Sho*; Takemoto, Akinori*; Yamaguchi, Masashi*; Horikawa, Ken*; Akimune, Hidetoshi*; Chiba, Satoshi*; Ogata, Kazuyuki*; et al.

Physical Review C, 93(4), p.044313_1 - 044313_4, 2016/04

 Times Cited Count:7 Percentile:49.18(Physics, Nuclear)

We have measured the azimuthal anisotropy of neutrons emitted from the $$^{56}$$Fe($$gamma$$, n)$$^{55}$$Fe reaction with a linearly polarized $$gamma$$ ray beam generated by laser Compton scattering at NewSUBARU. Neutron yields at the polar angle of 90$$^{circ}$$ have been measured as a function of the azimuthal angle $$phi$$ between the detector and the linear polarization plane of the ray beam. The azimuthal anisotropy of neutrons measured at seven angles has been well reproduced using a theoretically predicted function of $$a$$ + $$b$$cos(2$$phi$$).

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2013

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Sasao, Eiji; Iwatsuki, Teruki; Takeuchi, Ryuji; Matsuoka, Toshiyuki; Tanno, Takeo*; Onoe, Hironori; Ogata, Nobuhisa; et al.

JAEA-Review 2013-044, 37 Pages, 2014/01

JAEA-Review-2013-044.pdf:6.36MB

The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host crystalline rock at Mizunami City in Gifu, central Japan. The project consists of major research areas, "Geoscientific Research", and proceeds in three overlapping phases, "Phase I: Surface-based investigation Phase", "Phase II: Construction Phase" and "Phase III: Operation Phase". The present report summarizes the research and development activities planned for fiscal year 2013 based on the MIU Master Plan updated in 2010.

Journal Articles

Mechanical properties of full austenitic welding joint at cryogenic temperature for the ITER toroidal field coil structure

Iguchi, Masahide; Saito, Toru; Kawano, Katsumi; Chida, Yutaka; Nakajima, Hideo; Ogawa, Tsuyoshi*; Katayama, Yoshinori*; Ogata, Hiroshige*; Minemura, Toshiyuki*; Tokai, Daisuke*; et al.

Fusion Engineering and Design, 88(9-10), p.2520 - 2524, 2013/10

 Times Cited Count:10 Percentile:61.16(Nuclear Science & Technology)

ITER TFC structures are large welding structures made of heavy thick stainless steels. JAEA plans to apply narrow gap TIG welding with FMYJJ1 which is full austenitic stainless filler material to manufacture TFC structure. FMYJJ1 is specified in "Codes for Fusion Facilities -Rules on Superconducting Magnet Structure (2008)". In order to evaluate effect of base material combinations and thickness of welded joint on tensile properties at 4 K, tensile tests were conducted at 4 K by using tensile specimens taken from 40 mm thickness weld joints of four combinations and 200 mm thickness ones of two combinations of base materials. These weld joints were manufactured by one side narrow gap TIG welding with FMYJJ1. As the results, it was confirmed that yield and tensile strengths of welded joint at 4K were decreased with decreasing of nitrogen of base material, and there were no large distribution of strengths at 4 K along the thickness of welded joints of 200 mm thickness.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2012

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.

JAEA-Review 2012-028, 31 Pages, 2012/08

JAEA-Review-2012-028.pdf:3.86MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2010

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.

JAEA-Review 2012-020, 178 Pages, 2012/06

JAEA-Review-2012-020.pdf:33.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.

Journal Articles

Development of structures for ITER toroidal field coil in Japan

Iguchi, Masahide; Chida, Yutaka; Takano, Katsutoshi; Kawano, Katsumi; Saito, Toru; Nakajima, Hideo; Koizumi, Norikiyo; Minemura, Toshiyuki*; Ogata, Hiroshige*; Ogawa, Tsuyoshi*; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4203305_1 - 4203305_5, 2012/06

 Times Cited Count:9 Percentile:47.58(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) has responsibility to procure 19 structures for ITER toroidal field (TF) coils as in-kind components. JAEA plans to use materials specified in the material section of "Codes for Fusion Facilities; Rules on Superconducting Magnet Structure (2008)" issued by the Japan Society of Mechanical Engineers (JSME) in 2008. Large forged products were produced and their mechanical properties at 4K were evaluated. In addition, the following activities have been performed; (1) to optimize the design of each weld type identified in the manufacturing sequence, (2) to qualify typical welding procedure including repair, (3) to establish welding techniques other than narrow gap TIG welding with FMYJJ1, (4) to demonstrate the manufacturing procedures through manufacture of 1-m mockups and full-scale segments of TFC structure. This paper describes the results of material qualification and industrialization activities of manufacturing processes of ITER TFC structure.

Journal Articles

Development in fabrication structures for the ITER toroidal field coils

Iguchi, Masahide; Chida, Yutaka; Nakajima, Hideo; Ogawa, Tsuyoshi*; Katayama, Yoshinori*; Ogata, Hiroshige*; Minemura, Toshiyuki*; Miyabe, Keisuke*; Tokai, Daisuke*; Niimi, Kenichiro*

Teion Kogaku, 47(3), p.193 - 199, 2012/03

Japan Atomic Energy Agency (JAEA) has conducted qualification and rationalization activities in Japan in order to rationalize manufacturing procedure of ITER Toroidal Field (TF) coil structures. The activities included qualification of structural materials and qualification of welding procedure according to Japan Society of Mechanical Engineers (JSME) code constituted for fusion devices, demonstration of the manufacturing method and procedures through full-scale segments of TF coil structure. From results of these activities, JAEA confirmed applicability of JSME code to actual series TF coil structures as quality control method hence the quality of structural materials and weld joints of Gas Tungsten Arc Welding (GTAW) were satisfied ITER requirement. In addition, JAEA obtained knowledge of welding deformation of actual TF coil structures. This paper describes results of these qualification and development activities for TF coil structure.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Takeuchi, Ryuji; Saegusa, Hiromitsu; Mizuno, Takashi; Sato, Toshinori; Ogata, Nobuhisa; et al.

JAEA-Review 2011-027, 30 Pages, 2011/08

JAEA-Review-2011-027.pdf:4.18MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase, and the Operation Phase. This document introduces the research and development activities planned for 2011 fiscal year plan based on the MIU Master Plan updated in 2010, Investigation Plan, Construction Plan and Research Collaboration Plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2009

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.

JAEA-Review 2011-007, 145 Pages, 2011/03

JAEA-Review-2011-007.pdf:16.51MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2010

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-029, 28 Pages, 2010/08

JAEA-Review-2010-029.pdf:3.43MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based investigation phase (Phase1), Construction phase (Phase2) and Operation phase (Phase3). The project is currently under the construction phase, and the operation phase starts in 2010. This document introduces the research and development activities planned for 2010 fiscal year plan based on the MIU master plan updated in 2010, (1) Investigation plan, (2) Construction plan, (3) Research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2008

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-014, 110 Pages, 2010/07

JAEA-Review-2010-014.pdf:27.34MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2008, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

Journal Articles

Recent advances in the biology of heavy-ion cancer therapy

Hamada, Nobuyuki*; Imaoka, Tatsuhiko*; Masunaga, Shinichiro*; Ogata, Toshiyuki*; Okayasu, Ryuichi*; Takahashi, Akihisa*; Kato, Takamitsu*; Kobayashi, Yasuhiko; Onishi, Takeo*; Ono, Koji*; et al.

Journal of Radiation Research, 51(4), p.365 - 383, 2010/07

 Times Cited Count:115 Percentile:91.16(Biology)

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2009

Takeuchi, Shinji; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Amano, Kenji; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2009-017, 29 Pages, 2009/08

JAEA-Review-2009-017.pdf:3.69MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2009 fiscal year plan based on the MIU Master Plan updated in 2002, (1) Investigation Plan, (2) Construction Plan, (3) Research Collaboration Plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2007

Nishio, Kazuhisa; Matsuoka, Toshiyuki; Mikake, Shinichiro; Tsuruta, Tadahiko; Amano, Kenji; Oyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Mizuno, Takashi; et al.

JAEA-Review 2009-002, 88 Pages, 2009/03

JAEA-Review-2009-002-1.pdf:29.31MB
JAEA-Review-2009-002-2.pdf:35.38MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2007 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

30 (Records 1-20 displayed on this page)