Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Pressure-induced superconductivity of Ce$$_2$$Ni$$_3$$Ge$$_5$$

Nakashima, Miho*; Kohara, Hisanori*; Thamizhavel, A.*; Matsuda, Tatsuma; Haga, Yoshinori; Hedo, Masato*; Uwatoko, Yoshiya*; Settai, Rikio*; Onuki, Yoshichika

Physica B; Condensed Matter, 378-380, p.402 - 403, 2006/05

 Times Cited Count:7 Percentile:35.16(Physics, Condensed Matter)

The N$'e$el temperature of Ce$$_2$$Ni$$_3$$Ge$$_5$$ decreases with increasing pressure $$P$$ and becomes zero at a critical pressure $$Pc sim$$ 4 Gpa. The heavy fermion state was found to be formed around $$Pc$$, in which pressure region superconductivity was found below 0.26 K.

Oral presentation

Surface oxidation and tribological properties of a hydrogenated DLC exposed to a simulated low earth orbit space environment

Tagawa, Masahito*; Asada, Hidetoshi*; Yokota, Kumiko*; Ohara, Hisanori*; Nakahigashi, Takahiro*; Teraoka, Yuden; Martin, J. M.*; Belin, M.*

no journal, , 

Effect of space environment on a hydrogenated diamond-like carbon (DLC), which is a candidate of next generation space-approved solid lubricant, has been studied. No significant changes in friction coefficient and surface oxidation states were detected with energetic atomic oxygen fluence of 5$$times$$10$$^{18}$$ atoms/cm$$^{2}$$.

Oral presentation

Effect of hyperthermal atomic oxygen exposures on hydrogenated diamond-like carbon films

Yokota, Kumiko*; Asada, Hidetoshi*; Tagawa, Masahito*; Ohara, Hisanori*; Nakahigashi, Takahiro*; Yoshigoe, Akitaka; Teraoka, Yuden; Martin, J. M.*; Belin, M.*

no journal, , 

Hydrogenated diamond-like carbon (DLC) is expected as a lubricant for space uses because of its ultra low friction charactor in vacuum. Thus, DLC films were exposed to atomic oxygens which were generated by a laser detonation method simulating a low orbit space environment. The DLC surfaces were analysed and the results are reported in this talk. The hydrogenated amorphous DLC was fabricated by a RF-CVD method on Si substrates. Relative collision energy of space planes against atomic oxygens can be simulated with the space environment experimental apparatus. The DLC films exposed to atomic oxygens were analysed by an SR-PES method etc. The SR-PES was performed at the surface chemical reaction analysis station installed in the BL23SU of SPring-8. It was suggested that some volatile oxides were formed and desorbed from the DLC surface when DLC surface was irradiated by atomic oxygens with an incident energy of 4.2 eV and fluence of 5$$times$$10$$^{18}$$atoms/cm$$^{2}$$.

3 (Records 1-3 displayed on this page)
  • 1