Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 195

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Study on disposal of waste from reprocessing for commercial HTGR spent fuel

Fukaya, Yuji; Maruyama, Takahiro; Goto, Minoru; Ohashi, Hirofumi; Higuchi, Hideaki

JAEA-Research 2023-002, 19 Pages, 2023/06

JAEA-Research-2023-002.pdf:1.48MB

A study on disposal of waste derived from commercial High Temperature Gas-cooled Reactor ("HTGR") has been performed. Because of significant difference between the reprocessing of Light Water Reactor ("LWR") and that of HTGR due to difference in structures of the fuel, adoptability of the laws relating to reprocessing waste disposal, which is enacted for LWR, to HTGR waste should be confirmed. Then, we compared the technologies and waste of reprocessing and evaluated radioactivity concentration in graphite waste by activation and contamination based on whole core burn-up calculation. As a result, it was found that SiC residue waste should be disposed of into a geological repository as 2nd class designated radioactive waste in the Designated Radioactive Waste Final Disposal Act (Act No.117 of 2000), by way of amendment of the applicable order, same as hull and end-piece of LWR, and graphite waste should be shallowly disposed of than geological disposal as 2nd class waste for pit disposal in the Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors (Act No.166 of 1957) same as a channel box of LWR.

Journal Articles

Feasibility study on reprocessing of HTGR spent fuel by existing PUREX plant and technology

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi

Annals of Nuclear Energy, 181, p.109534_1 - 109534_10, 2023/02

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Feasibility of reprocessing of High Temperature Gas-cooled Reactor (HTGR) spent fuel by existing Plutonium Uranium Redox EXtraction (PUREX) plant and technology has been investigated. The spent fuel dissolved solution includes approximately 3 times amount of uranium-235 and 1.5 times amount of protonium because of the 3 times higher burnup compared with that of Light Water Reactor (LWR). Then, the heavy metal of the spent fuel is planned to be diluted to 3.1 times by depleted uranium to satisfy the limitation of Rokkasho Reprocessing Plant (RRP) plant. In the present study, recoverability of uranium and plutonium with the dilution is confirmed by a simulation with a reprocessing process calculation code. Moreover, the case without the dilution from the economic perspective is investigated. As a result, the feasibility is confirmed without the dilution, and it is expected that the reprocessed amount is reduced to 1/3 compared with a diluted case even though the facility should be optimized from the perspective of mass flow and criticality.

Journal Articles

Study on evaluation method of kernel migration of TRISO fuel for High Temperature Gas-cooled Reactor

Fukaya, Yuji; Okita, Shoichiro; Sasaki, Koei; Ueta, Shohei; Goto, Minoru; Ohashi, Hirofumi; Yan, X.

Nuclear Engineering and Design, 399, p.112033_1 - 112033_9, 2022/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Kernel migration of TRi-structural ISOtropic (TRISO) fuel for High Temperature Gas-cooled Reactor (HTGR) has been analyzed to investigate the potential dominating effects. Kernel migration is a major fuel failure mode and dominant to determine the lifetime of the fuel for High Temperature engineering Test Reactor (HTTR). However, this study shows that the result and reliability depend on the evaluation method. The evaluation method used in this study takes into account of actual distribution of Coated Fuel Particles (CFPs) and the resulting heterogeneous fuel temperature calculation with such distribution. The result shows that the Kernel Migration Rate (KMR) is predicted to be about 10% less compared with the most conservative evaluation.

Journal Articles

Re-evaluation of electricity generation cost of HTGR

Fukaya, Yuji; Ohashi, Hirofumi; Sato, Hiroyuki; Goto, Minoru; Kunitomi, Kazuhiko

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 21(2), p.116 - 126, 2022/06

An improvement electricity generation cost evaluation method for High Temperature Gas-cooled Reactors (HTGRs) has been performed. Japan Atomic Energy Agency (JAEA) had completed the commercial HTGR concept named Gas Turbine High Temperature Reactor (GTHTR300) and the electricity generation cost evaluation method approximately a decade ago. The cost evaluation was developed based on the method of Federation of Electric Power Companies (FEPC). The FEPC method was drastically revised after the Fukushima Daiichi nuclear disaster. Moreover, the escalation of material and labor cost for the decade should be consider to evaluate the latest cost. Therefore, we revised the cost evaluation method for GTHTR300 and the cost was compared with that of Light Water Reactor (LWR). As a result, it was found that the electricity generation cost of HTGR of 7.9 yen/kWh is cheaper than that of LWR of 11.7 yen/kWh by approximately 30% at the capacity factor of 70%.

Journal Articles

Computed tomography neutron detector system to observe power distribution in a core with long neutron flight path

Fukaya, Yuji; Okita, Shoichiro; Nakagawa, Shigeaki; Goto, Minoru; Ohashi, Hirofumi

Annals of Nuclear Energy, 168, p.108911_1 - 108911_7, 2022/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A power distribution monitoring system by using a moving detector for a core with a long neutron flight path has been proposed. High Temperature Gas-cooled Reactor (HTGR) and Fast Reactor (FR) has a long neutron flight path and the neutrons reach to detector far from fuel assembly in the center of the core unlike Light Water Reactor (LWR). By using the feature, power distribution can be observed with a few detectors by moving the detector and computed tomography technology similar to X-ray Computed Tomography (CT). For a small-sized core, the power distribution can be evaluated only by an ex-core neutron detector. For a large-sized core with inner detectors, the power distribution can be observed with a small number of in-core detectors even if the deployment is limited due to material integrity conditions such as temperature environment. The feasibility is numerically confirmed by simulations of the HTGR core and its detector response. It is expected to observe the power distribution in the core of HTGR and FR, which is difficult continuously to deploy in-core detectors because of high temperature and/or high irradiation damage.

Journal Articles

Improving the safety of the high temperature gas-cooled reactor "HTTR" based on Japan's new regulatory requirements

Hamamoto, Shimpei; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Sekita, Kenji; Watanabe, Shuji; Furusawa, Takayuki; Iigaki, Kazuhiko; et al.

Nuclear Engineering and Design, 388, p.111642_1 - 111642_11, 2022/03

 Times Cited Count:0 Percentile:33.72(Nuclear Science & Technology)

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, the Japan Atomic Energy Agency adapted High-Temperature engineering Test Reactor (HTTR) to meet the new regulatory requirements that began in December 2013. The safety and seismic classifications of the existing structures, systems, and components were discussed to reflect insights regarding High Temperature Gas-cooled Reactors (HTGRs) that were acquired through various HTTR safety tests. Structures, systems, and components that are subject to protection have been defined, and countermeasures to manage internal and external hazards that affect safety functions have been strengthened. Additionally, measures are in place to control accidents that may cause large amounts of radioactive material to be released, as a beyond design based accident. The Nuclear Regulatory Commission rigorously and appropriately reviewed this approach for compliance with the new regulatory requirements. After nine amendments, the application to modify the HTTR's installation license that was submitted in November 2014 was approved in June 2020. This response shows that facilities can reasonably be designed to meet the enhanced regulatory requirements, if they reflect the characteristics of HTGRs. We believe that we have established a reference for future development of HTGR.

Journal Articles

Seismic classification of high temperature engineering test reactor

Ono, Masato; Shimizu, Atsushi; Ohashi, Hirofumi; Hamamoto, Shimpei; Inoi, Hiroyuki; Tokuhara, Kazumi*; Nomoto, Yasunobu*; Shimazaki, Yosuke; Iigaki, Kazuhiko; Shinozaki, Masayuki

Nuclear Engineering and Design, 386, p.111585_1 - 111585_9, 2022/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the late 1980s during the design stage, the seismic classification of the high temperature engineering test reactor (HTTR) was formulated. Owing to the lack of operation experiences of the HTTR to sufficiently understand the safety characteristics of high temperature gas cooled reactors (HTGR) at that time, the seismic classification of commercial light water reactors (LWR) was applied to HTTR. However, the subsequent operation experiences and test results using HTTR made it clear that the seismic classification of commercial LWR was somewhat too conservative for the HTGR. As a result, Class S facilities were downgraded compared to the commercial LWR. Moreover, the validity of the new seismic classification is confirmed. In June 2020, the Nuclear Regulatory Authority approved that the result of the seismic classification conformed to the standard rules of the reactor installation change.

Journal Articles

Proposal of evaluation method of graphite incombustibility

Hamamoto, Shimpei; Ohashi, Hirofumi; Iigaki, Kazuhiko; Shimazaki, Yosuke; Ono, Masato; Shimizu, Atsushi; Ishitsuka, Etsuo

Proceedings of 2021 International Congress on Advances in Nuclear Power Plants (ICAPP 2021) (USB Flash Drive), 6 Pages, 2021/10

Since the HTGR has a large amount of graphite material in the core, it is necessary to assume an accident in which the reactor pressure boundary is damaged and air flows into the core. It is important to state that at the time of this accident, graphite does not burn and the accident does not develop due to the heat of oxidation reaction. Therefore, in this study, in order to evaluate the combustibility of graphite materials, we propose a method to compare the calorific value and heat removal amount of the material. When calculating the calorific value, the structural material of HTTR, a high-temperature gas reactor in Japan, was used as a reference. The amount of air in contact with the structural material is a value determined from the chimney effect. The amount of heat release is the sum of convection and radiation. As a result of comparing the heat generation amount with the heat removal amount, it was shown that the heat release amount was always larger than the heat generation amount. This result shows that the graphite material does not depend on the state at the time of the air inflow accident, the temperature decreases and does not burn. It is important to clearly explain the non-flammability of graphite materials when deciding how to deal with severe accidents in HTGRs. This quantitative evaluation method based on a simple theory is considered useful.

Journal Articles

Development of cesium trap material for coated fuel particles in high temperature gas-cooled reactors

Sasaki, Koei; Miura, Shuichiro*; Fukumoto, Kenichi*; Goto, Minoru; Ohashi, Hirofumi

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 6 Pages, 2021/08

Cs-Bi and Cs-Sb absorbed graphite samples (Cs-Bi/graphite and Cs-Sb/graphite) were synthesized and their high temperature chemical stabilities were tested up to 1500$$^{circ}$$C by TG and analyzed by TEM-EDS for the development of Cs trap material in high temperature gas-cooled reactor (HTGR) fuel particles. It was observed that Cs was stabilized by Sb but not by Bi in the specimens after the TG test. A rapid weight loss from 800 to 1000$$^{circ}$$C may be caused by evaporation of Cs (boiling point: 671$$^{circ}$$C) was seen in the TG result of both specimens. Precipitated Cs-Sb substance in the graphite matrix were not resolved even after the 1500$$^{circ}$$C heating. The chemical composition of the Cs-Sb was specified as Cs$$_{3}$$Sb. The experimental results suggest that Sb have potential to be a Cs getter material in graphite matrix. Long term heating test should be performed to confirm adaptability of Sb for Cs trap material in HTGR fuel particles.

Journal Articles

Feasibility study on burnable poison credit concept to HTGR fuel fabrication from core specification perspective

Fukaya, Yuji; Ueta, Shohei; Goto, Minoru; Ohashi, Hirofumi

Annals of Nuclear Energy, 151, p.107937_1 - 107937_9, 2021/02

 Times Cited Count:2 Percentile:32.89(Nuclear Science & Technology)

Feasibility study on Burnable Poison (BP) credit concept to High Temperature Gas-cooled Reactor (HTGR) fuel fabrication has been performed. By mixing BP into fuel material in the first place of fuel fabrication, criticality safety is ensured in the all fuel fabrication process even with high enrichment fuel such as 14 wt% used in commercial HTGR. However, the poison effect also prevents the criticality even in the HTGR core, and it may shorten cycle length and achievable burn-up of the core. Therefore, the effect is evaluated by whole core burn-up calculation. As a BP, boron, gadolinium, erbium, and hafnium are investigated. As a result, it is found that boron and gadolinium suit this concept and the 14 wt% fuel can be fabricated in the plant fabricating 9.9 wt% High Temperature engineering Test Reactor (HTTR) fuel. With the boron and gadolinium, the commercial HTGR fuel can be fabricated with the safety measure as same as Light Water Reactor (LWR) fuel facility to treat the fuel with the enrichment up to 5 wt%. Especially, gadolinium is significantly suitable to this concept due to the dependency to spectrum, and more enhanced safety measure is feasible as well.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Research and development activities of JAEA for HTGR system realization

Mineo, Hideaki; Nishihara, Tetsuo; Ohashi, Hirofumi; Goto, Minoru; Sato, Hiroyuki; Takegami, Hiroaki

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(9), p.504 - 508, 2020/09

High-Temperature Gas-cooled Reactor (HTGR) is one of thermal neutron reactor-type that employs helium gas coolant and graphite moderator. It has excellent inherent safety and can supply high-temperature heat which can be used not only for electric power generation but also for a wide range of application such as hydrogen production. Therefore, HTGR is expected to be an effective technology for reducing greenhouse gases in Japan as well as overseas. In this paper, we will introduce the forefront of technological development that JAEA is working toward the realization of an HTGR system consisting of a high temperature gas reactor and heat utilization facilities such as gas-turbine power generation and hydrogen production.

Journal Articles

Guidance for developing fuel design limit of high temperature gas-cooled reactor

Sato, Hiroyuki; Aoki, Takeshi; Ohashi, Hirofumi

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 10 Pages, 2020/08

The present study aims to propose a guidance that facilitates to determine fuel design limits of commercial HTGR on the basis of licensing experience through the HTTR construction. The guidance consists of a set of FOMs and a process to determine their evaluation criteria. The FOMs are firstly identified to satisfy safety requirements and a basic concept of safety guides established in a special committee under the AESJ with the support of the Research Association of High Temperature Gas Cooled Reactor Plant. The development process for the evaluation criteria takes into account not only the top-level regulatory criteria but also design dependent constraints including the performance of fission product containment in physical barriers other than fuel, fuel qualification criteria, design specifications of an instrumentation and control system. As a result, a comprehensive and transparent procedure for designers of prismatic-type commercial HTGR has been developed.

Journal Articles

Methodology development for transient flow distribution analysis in high temperature gas-cooled reactor

Aoki, Takeshi; Sato, Hiroyuki; Ohashi, Hirofumi

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

The flow distribution analysis, which is a part of thermal hydraulic design of the prismatic-type of the high temperature gas cooled reactor (HTGR) considering unintended flows between graphite blocks, has been performed for steady and conservative conditions. On the other hand, the transient analysis for satisfactorily realistic conditions will be helpful for the design improvement of prismatic-type HTGR. The present study aims to develop the transient flow distribution analysis code and confirm its applicability for the transient flow distribution analysis for prismatic-type HTGRs during anticipated operational occurrences and accidents utilizing experiences on high temperature engineering test reactor (HTTR) design. The calculation model and code were developed and validated for analysis of the unintended flows in the core and the molecular diffusion dominant in beginning air ingress behavior in an air ingress accident.

Journal Articles

Development of a flow network calculation code (FNCC) for high temperature gas-cooled reactors (HTGRs)

Aoki, Takeshi; Isaka, Kazuyoshi; Sato, Hiroyuki; Ohashi, Hirofumi

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

The flow distribution analysis performed in the HTGR design has to take into account the interaction thermal and radiation deformations of the graphite structure, and the gaps between the graphite structures forming unintended flow. In the present study, a user-friendly flow network calculation code (FNCC) has been developed on the basis of experiences of High Temperature engineering Test Reactor (HTTR) design for HTGR design with enhanced compatibility with other HTGR design codes and with considering graphite block deformation in iteration process without manual control. The validation of FNCC was performed for the one-column flow distribution test. The analytical results using FNCC showed good agreement with the experimental results. It is concluded that FNCC was validate for the analysis of distributions of flowrate and pressure for the flow network model including the unintended flow paths in prismatic-type HTGRs.

Journal Articles

Uncertainty analysis of toxic gas leakage accident in cogeneration high temperature gas-cooled reactor

Sato, Hiroyuki; Ohashi, Hirofumi

Mechanical Engineering Journal (Internet), 7(3), p.19-00332_1 - 19-00332_11, 2020/06

An uncertainty analysis method for control room habitability under toxic gas leakage accidents in cogeneration HTGR is proposed to support risk-informed design of the plant. The method is applied to representative toxic gas leakage accidents in a IS process hydrogen production plant coupled to the HTTR gas turbine test plant. Epistemic and aleatory uncertainties for each variable parameter are identified and are propagated using Latin hypercube sampling. The analyses show that the suggested method can successfully characterize and quantify uncertainties in the toxic gas concentration in control room. The results lead us to the conclusion that toxic gas dispersion behavior analysis should combine two evaluation methods: dense gas dispersion model and computational fluid dynamics simulation.

Journal Articles

Research and development on high burnup HTGR fuels in JAEA

Ueta, Shohei; Mizuta, Naoki; Sasaki, Koei; Sakaba, Nariaki; Ohashi, Hirofumi; Yan, X.

Mechanical Engineering Journal (Internet), 7(3), p.19-00571_1 - 19-00571_12, 2020/06

JAEA has been progressing to design HTGR fuels for not only small-type practical HTGRs but also VHTR proposed in GIF which can be utilized for various purposes with high-temperature heat at 750 to 950 $$^{circ}$$C. To increase economy of these HTGRs, JAEA has been upgrading the design method for the HTGR fuel, which can maintain their integrities at the burnup of three to four times higher than that of the conventional HTTR fuel. Design principles and specifications of various concepts of the high burnup HTGR fuels designed by JAEA are reported. As the latest results on post-irradiation examinations of the high burnup HTGR fuel progressing in a framework of international collaboration with Kazakhstan, irradiation shrinkage rate of the fuel compact as a function of fast neutron fluence was obtained at around 100 GWd/t. Furthermore, the future R&Ds needed for the high burnup HTGR fuel are described based on these experimental results.

Journal Articles

Conceptual design study of a high performance commercial HTGR for early introduction

Fukaya, Yuji; Mizuta, Naoki; Goto, Minoru; Ohashi, Hirofumi; Yan, X.

Nuclear Engineering and Design, 361, p.110577_1 - 110577_6, 2020/05

AA2018-0707.pdf:0.68MB

 Times Cited Count:4 Percentile:46.37(Nuclear Science & Technology)

Conceptual design study of a commercial High Temperature Gas-cooled Reactor (HTGR) for early introduction has been performed based on the cumulated experience in design, construction, and operation of the High Temperature engineering Test Reactor (HTTR) and design of the commercial Gas Turbine High Temperature Reactor 300 (GTHTR300). The power output is 165 MWt and the inlet and outlet coolant temperatures are 325$$^{circ}$$C and 750$$^{circ}$$C, respectively, to provide steam for industrial utilization. However, given a requirement for the reactor pressure vessel to be smaller even that of the 30 MWt HTTR, several challenging technical problems have to be dealt with to arrive in a high performance core design that provides extended fuel burnup, prolonged refueling period, improved fuel refueling scheme, improved fuel element and so on from the HTTR.

Journal Articles

Self-shielding effect of double heterogeneity for plutonium burner HTGR design

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi

Annals of Nuclear Energy, 138, p.107182_1 - 107182_9, 2020/04

AA2019-0041.pdf:0.93MB

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The investigation on self-shielding effect of double heterogeneity for plutonium burner High Temperature Gas-cooled Reactor (HTGR) design has been performed. Plutonium burner HTGR designed in the previous study by using the advantage of double heterogeneity to control excess reactivity. In the present study, the mechanism of the self-shielding effect is elucidated by the analysis of burn-up calculation and reactivity decomposition based on exact perturbation theory. As a result, it is revealed that the characteristics of burn-up reactivity are determined by resonance cross section peak at 1 eV of $$^{240}$$Pu due to the surface term of background cross section, this is, the characteristics of neutron leakage from fuel lump and collision to a moderator. Moreover, significant spectrum shift is caused during the burn-up period, and it enhances reactivity worth of $$^{239}$$Pu and $$^{240}$$Pu in EOL.

Journal Articles

Research and development for safety and licensing of HTGR cogeneration system

Sato, Hiroyuki; Aoki, Takeshi; Ohashi, Hirofumi; Yan, X.

Nuclear Engineering and Design, 360, p.110493_1 - 110493_8, 2020/04

 Times Cited Count:8 Percentile:79.84(Nuclear Science & Technology)

JAEA has been conducting research and development with a central focus on the utilization of HTTR, the first HTGR in Japan, towards the realization of industrial use of nuclear heat. On the basis of licensing experience through the HTTR construction, JAEA initiated an activity to establish an international safety standard for licensing of commercial HTGR cogeneration systems fully taking into account safety features of HTGRs. We have developed a roadmap towards licensing of commercial HTGR cogeneration systems. A test plan using the HTTR to support the establishment of safety standards and safety analysis methods are also presented. In addition, we confirmed that a vessel cooling system, a passive air-cooled decay heat removal system, satisfies the safety requirement.

195 (Records 1-20 displayed on this page)