Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Embedded system using a radiation-hardened processor (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2023-038, 48 Pages, 2024/03

JAEA-Review-2023-038.pdf:2.58MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems inthe nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Embedded system using a radiation-hardened processor" conducted in FY2022. The present study aims to be developing a radiation-hardened optoelectronic processor with a 10 MGy total-ionizing-dose (TID) tolerance, a radiation-hardened processor without any optical component with a 4 MGy TID tolerance, a radiation-hardened memory with a 4 MGy TID tolerance, and a radiation-hardened power supply unit with a 1 MGy TID tolerance. Moreover, Japanese research group will support radiation- hardened field programmable gate arrays, power supply units, and radiation-hardened optical systems for radiation-hardened robot systems and radiation sensor systems developed by UK team.

JAEA Reports

Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2022-017, 56 Pages, 2022/08

JAEA-Review-2022-017.pdf:6.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs" conducted in FY2020. This research is developing a radiation-hardened optoelectronic FPGA with a 1 Grad total-ionizing-dose tolerance on which optical technologies are introduced onto a semiconductor technology and a radiation hardened FPGA with a 200 Mrad total-ionizing-dose tolerance not using any optical component. Moreover, Japanese research group will support hardware acceleration on FPGAs used for neutron-detection system developed by UK team.

JAEA Reports

Interdisciplinary evaluation of biological effect of internal exposure by inhaling alpha-ray emitting nuclides represented by radon (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2021-028, 57 Pages, 2021/11

JAEA-Review-2021-028.pdf:1.94MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Interdisciplinary evaluation of biological effect of internal exposure by inhaling alpha-ray emitting nuclides represented by radon" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to evaluate the influence of radiation exposure to alpha-ray emitting dusts generated in decommissioning of the nuclear reactors. Radon is used here as a surrogate nuclide because it is an alpha-ray emitter and there have been extensive studies on it so far.

JAEA Reports

Interdisciplinary evaluation of biological effect of internal exposure by inhaling alpha-ray emitting nuclides represented by radon (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2020-029, 55 Pages, 2020/12

JAEA-Review-2020-029.pdf:2.08MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Interdisciplinary Evaluation of Biological Effect of Internal Exposure by Inhaling Alpha-ray Emitting Nuclides Represented by Radon" conducted in FY2019.

JAEA Reports

Interdisciplinary evaluation of biological effect of internal exposure by inhaling alpha-ray emitting nuclides represented by radon (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2019-024, 61 Pages, 2020/01

JAEA-Review-2019-024.pdf:2.22MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Interdisciplinary Evaluation of Biological Effect of Internal Exposure by Inhaling Alpha-ray Emitting Nuclides Represented by Radon". In the present study, the effect of alpha-ray emission in human body on the surrounding cells is estimated, and biological response to alpha-ray exposure is investigated at the whole organism level, by the evaluation method for radiation effects using radon that is an alpha-ray emitting nuclide, because there have been extensive studies on radon so far. From the obtained results, a model to evaluate the effect of internal exposure by alpha-ray emitting nuclides on health is constructed. Through these studies, we aim to form a research base by the interdisciplinary organic collaboration among research organizations.

5 (Records 1-5 displayed on this page)
  • 1