Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Installation and test programme of the ITER poloidal field conductor insert (PFCI) in the ITER test facility at JAEA Naka

Nunoya, Yoshihiko; Takahashi, Yoshikazu; Hamada, Kazuya; Isono, Takaaki; Matsui, Kunihiro; Oshikiri, Masayuki; Nabara, Yoshihiro; Hemmi, Tsutomu; Nakajima, Hideo; Kawano, Katsumi; et al.

IEEE Transactions on Applied Superconductivity, 19(3), p.1492 - 1495, 2009/06

 Times Cited Count:1 Percentile:12.1(Engineering, Electrical & Electronic)

The ITER Poloidal Field Conductor Insert (PFCI) was constructed to characterize the performance of selected cable-in-conduit NbTi conductors for the ITER Poloidal Field (PF) under relevant operating conditions. The PFCI was installed and tested inside the bore of the ITER CS model coil, which provides the background magnetic field. The PFCI is a single-layer solenoid, wound from about 50 m of a full-size ITER cable-in-conduit conductor. The winding diameter and height are about 1.5 m and 1 m, respectively. The nominal design current of the conductor is 45 kA at 6 T and 5 K. The main items in the PFCI test programme are current sharing temperature (Tcs) measurements, critical current (Ic) measurements and AC loss measurement. The key technology of the installation, the test methods and procedures, and some preliminary results of the testing campaigns are described and discussed in this paper.

Journal Articles

Predictive analysis of the ITER poloidal field conductor insert (PFCI) test program

Zanino, R.*; Astrov, M.*; Bagnasco, M.*; Baker, W.*; Bellina, F.*; Ciazynski, D.*; Egorov, S. A.*; Kim, K.*; Kvitkovic, J. L.*; Lacroix, B.*; et al.

IEEE Transactions on Applied Superconductivity, 17(2), p.1353 - 1357, 2007/06

 Times Cited Count:4 Percentile:29.39(Engineering, Electrical & Electronic)

The PFCI will be tested at JAEA Naka, inside the bore of the ITER Central Solenoid Model Coil. The main test program are the DC characterization of the conductor, the measurement of AC losses in conductor, the hydraulic characterization, the stability and the quench propagation, and the effects of cycling electromagnetic load. Based on and in support of this test program, an extensive campaign of predictive analysis has been initiated on a subset of the above-mentioned test program items and the results of the comparison of selected predictions from different laboratories will be presented and discussed. A sudden quench at 5.7-6.2 K and 45 kA is predicted. The computed temperature increase at the winding outlet is about 0.5 K for the pulse. These results will be compared with the experiment and used for an accurate prediction of the PF coil performance.

Journal Articles

Implications of NbTi short-sample test results and analysis for the ITER Poloidal Field Conductor Insert (PFCI)

Zanino, R.*; Bagnasco, M.*; Baker, W.*; Bellina, F.*; Bruzzone, P.*; della Corte, A.*; Ilyin, Y.*; Martovetsky, N.*; Mitchell, N.*; Muzzi, L.*; et al.

IEEE Transactions on Applied Superconductivity, 16(2), p.886 - 889, 2006/06

 Times Cited Count:7 Percentile:40.69(Engineering, Electrical & Electronic)

As the test of the PFCI is foreseen at JAERI Naka, Japan, it is essential to consider in detail the lessons learned from the short NbTi sample tests, as well as the issues left open after them, in order to develop a suitable test program of the PFCI aimed at bridging the extrapolation gap between measured strand and future PF coil performance. Here we consider in particular the following issues: (1) the actual possibility to quench the PFCI conductor in the TCS tests before quenching the intermediate joint, (2) the question of the so-called sudden or premature quench, based on SULTAN sample results, applying a recently developed multi-solid and multi-channel extension of the Mithrandir code to a short sample analysis; (3) the feasibility of the AC losses calorimetry in the PFCI. These results show that Tcs measurement and the calorimetric measurement of AC losses will be carried out successfully. However, we need further analytic works for the problem of the sudden quench.

Journal Articles

Progress of the ITER central solenoid model coil programme

Tsuji, Hiroshi; Okuno, Kiyoshi*; Thome, R.*; Salpietro, E.*; Egorov, S. A.*; Martovetsky, N.*; Ricci, M.*; Zanino, R.*; Zahn, G.*; Martinez, A.*; et al.

Nuclear Fusion, 41(5), p.645 - 651, 2001/05

 Times Cited Count:57 Percentile:83.02(Physics, Fluids & Plasmas)

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1