Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 44

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

System of radiological protection; Towards a consistent framework on earth and in space

R$"u$hm, W.*; Ban, Nobuhiko*; Chen, J.*; Li, C.*; Dobynde, M.*; Durante, M.*; El-Jaby, S.*; Komiyama, Tatsuto*; Ozasa, Kotaro*; Sato, Tatsuhiko; et al.

Journal of Medical Physics - Zeitschrift f$"u$r medizinische Physik -, 10 Pages, 2024/00

The International Commission on Radiological Protection (ICRP) provides independent recommendations on radiological protection for the public benefit. For more than 90 years, the ICRP System of Radiological Protection has been guiding the development and implementation of national and international standards and regulations on radiological protection. In 2019, ICRP established Task Group (TG) 115 to address a broader range of topics related to dose and risk assessment for radiological protection of astronauts. This paper gives an overview of the System of Radiological Protection and a brief summary of ICRP's work on radiological protection of astronauts.

Journal Articles

Progress report of Japanese simulation research projects using the high-performance computer system Helios in the International Fusion Energy Research Centre

Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03

The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.

Journal Articles

Numerical analysis of organ doses delivered during computed tomography examinations using Japanese adult phantoms with the WAZA-ARI dosimetry system

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Ban, Nobuhiko*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Yoshitake, Takayasu*; Kai, Michiaki*

Health Physics, 109(2), p.104 - 112, 2015/08

 Times Cited Count:8 Percentile:56.13(Environmental Sciences)

A dosimetry system, named WAZA-ARI, is developed to assess accurately radiation doses to persons from Computed Tomography (CT) examination patients in Japan. Organ doses were prepared to application to dose calculations in WAZA-ARI by numerical analyses using average adult Japanese human models with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the radiation configuration on the table for some multi-detector row CT (MDCT) devices. Then, a source model in PHITS could specifically take into account for emissions of X-ray in each MDCT device based on the experiment results. Numerical analyses with PHITS revealed a concordance of organ doses with human body size. The organ doses by the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculation in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model. The results implied that analyses using the Japanese phantoms and PHITS including source models can appropriately give organ dose data with consideration of the MDCT device and physiques of typical Japanese adults.

Journal Articles

WAZA-ARI; A Dose assessment system for patients in CT scan

Sato, Kaoru; Takahashi, Fumiaki; Endo, Akira; Ono, Koji*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Yoshitake, Takayasu*; Ban, Nobuhiko*; Kai, Michiaki*

RIST News, (58), p.25 - 32, 2015/01

The Japan Atomic Energy Agency (JAEA) are now developing WAZA-ARI for improvement of management of exposure doses due to CT examination under the joint research with the Oita University of Nursing and Health Sciences. The trial version of WAZA-ARI has been released on 21 December 2012. In trial version, users can perform dose assessment by using organ dose database based on the average adult Japanese male (JM-103) and female (JF-103) voxel phantoms and a 4 years old female voxel phantom (UFF4). The homepage of WAZA-ARI has been accessed over 1000 times per month and 28421 times by the end of September 2014. We are developing WAZA-ARI version 2 as the extension version of dose calculation functions of WAZA-ARI. WAZA-ARI version 2 will be released by the end of March 2015. In WAZA-ARI version 2. Users can upload dose calculation results to WAZA-ARI version 2 server, and utilize improvement of the dose management of patients and the optimization of CT scan conditions.

Journal Articles

Effects of human model configuration in Monte Carlo calculations for organ doses from CT examinations

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Yoshitake, Takayasu*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Ban, Nobuhiko*; Kai, Michiaki*

Progress in Nuclear Science and Technology (Internet), 2, p.153 - 159, 2011/10

Computed Tomography (CT) is one of the most useful tools for medical diagnosis, and is becoming a major source of medical exposure in developed countries. Appropriate radiation protection in CT examinations is emphasized by international organizations, such as the International Atomic Energy Agency (IAEA), because the patients receive higher radiation doses than in conventional radiography. Medical staffs can acquire dose information on the conditions of some CT examinations with available dosimetry systems, which had been already developed. These systems utilize datasets of organ and tissue doses, which were derived with Monte Carlo calculations. Methods in computational analyses, however, have been improved, since these calculations had been performed. Then, our new dosimetry system for CT examination, WAZA-ARI, is being developed to estimate radiation dose based upon the state-of-art numerical analyses. Our analysis adopts Particle and Heavy Ion Transport code System (PHITS) coupled with a voxel-type phantom, JM phantom, for the organ dose calculation. PHITS has advantageous to define the model of photon emission from X-ray tube in a CT device for radiation transport calculations. The physique and mass of organs for JM phantom are similar to those for average Japanese male adults. Since the goal of WAZA-ARI is to provide dosimetric information of arbitrary patient, it is important to evaluate uncertainty due to different configurations in human bodies between JM phantom and individual patients. For this purpose, the organ doses are calculated and compared for different human models; another Japanese male adult voxel phantom and the ICRP reference voxel phantom, which is constructed on the basis of Caucasian data.

Journal Articles

Development of a web-based CT dose calculator; WAZA-ARI

Ban, Nobuhiko*; Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Hasegawa, Takayuki*; Yoshitake, Takayasu*; Katsunuma, Yasushi*; Kai, Michiaki*

Radiation Protection Dosimetry, 147(1-2), p.333 - 337, 2011/09

 Times Cited Count:27 Percentile:87.94(Environmental Sciences)

A web-system of WAZA-ARI is being developed to assess radiation dose to a patient in a Computed Tomography (CT) examination. The databases of organ doses for WAZA-ARI were derived by the Japanese adult Male phantom (JM phantom) combined with the Particle and Heavy Ion Transport code System, PHITS. In the Monte Carlo simulation, the phantoms were irradiated with a 5 mm-thick fan-shaped photon beam, which was moved every 5 mm along the body axis from the upper leg to the top of head. The attenuation by the beam-shaping filter (bow-tie filter) was also taken into account here. The MIRD-type phantom was also applied to the calculations. The MIRD phantom sometimes showed step changes for organ doses, while smoother curves were obtained for JM phantom. The dose data by JM phantom were incorporated into the WAZA-ARI system, which has been implemented on a Linux server. With regard to the system implementation, the system has achieved a high degree of flexibility without commercial software.

Journal Articles

WAZA-ARI; Computational dosimetry system for X-ray CT examinations, 1; Radiation transport calculation for organ and tissue doses evaluation using JM phantom

Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji*; Yoshitake, Takayasu*; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Ban, Nobuhiko*; Kai, Michiaki*

Radiation Protection Dosimetry, 146(1-3), p.241 - 243, 2011/07

 Times Cited Count:20 Percentile:81.61(Environmental Sciences)

A web-system of WAZA-ARI is being developed to assess radiation dose to a patient in a Computed Tomography (CT) examination. WAZA-ARI utilizes a set of organ and tissue doses in a database for the dose assessment, according to the given resources with a consideration of the examination condition. The organ and tissue doses in the database have been derived with the Particle and Heavy Ion Transport code System, PHITS. Modeling of the patient was a significant issue in the radiation transport calculation. JM phantom, whose height (171 cm) and weight (65 kg) are near to those averaged over Japanese male adults, was incorporated to PHITS as a human model. Since JM phantom consisted of about 1 mm$$^{3}$$ size voxel, the shapes could be realistically reproduced even for small organs such as thyroid, adrenals. Masses of most organs could be also adjusted to the averaged values of Japanese male adults. In addition, our calculations introduced a new phantom without arms based upon JM phantom, because the patient usually puts arms toward the head direction in a torso examination. Some of organ doses calculated by JM phantom were compared with results, which were derived with a MIRD-type phantom. Differences could be seen in some organ doses between the phantoms, if photon attenuations in a shaping (Bow-tie) filter were taken into account to a source model in PHITS.

Journal Articles

WAZA-ARI; Computational dosimetry system for X-ray CT examinations, 2; Development of web-based system

Ban, Nobuhiko*; Takahashi, Fumiaki; Ono, Koji*; Hasegawa, Takayuki*; Yoshitake, Takayasu*; Katsunuma, Yasushi*; Sato, Kaoru; Endo, Akira; Kai, Michiaki*

Radiation Protection Dosimetry, 146(1-3), p.244 - 247, 2011/07

 Times Cited Count:20 Percentile:81.61(Environmental Sciences)

We are developing a web-based system, WAZA-ARI, for the dose calculation of patients undergoing X-ray CT examinations. Tissue doses were calculated in a Japanese adult male phantom (JM phantom) using a Monte Carlo code, PHITS, and the normalized dose coefficient data are stored as XML files. The system is implemented in Java on a Linux server running Apache Tomcat, which is accessed via a web browser over a network. Users are requested to choose scanning options and to input parameters in the data entry screen. The corresponding dose data are called upon input, and they are summed over the scan range specified by the user to estimate unit tissue doses. Tissue doses are computed based on the radiographic exposure (mAs), the beam pitch and air kerma at the beam center on the axis of rotation. Users can also use their own air kerma, CTDI vol and DLP values for the dose computation instead of the default setting. Although the dose coefficients are prepared for only limited CT scanner models currently, our system has achieved high usability and easy maintenance without commercial software. Possibility of further expansion for the practical application is also discussed.

Journal Articles

Analysis of organ doses from Computed Tomography (CT) examination by the radiation transport calculation to develop the dosimetry system, WAZA-ARI

Takahashi, Fumiaki; Endo, Akira; Sato, Kaoru; Hasegawa, Takayuki*; Katsunuma, Yasushi*; Ono, Koji*; Yoshitake, Takayasu*; Ban, Nobuhiko*; Kai, Michiaki*

Progress in Nuclear Science and Technology (Internet), 1, p.517 - 520, 2011/02

Several dose assessment system were developed to avoid unnecessary exposure for a patient in a Computed Tomography (CT) examination. Most of these systems contain datasets of organ doses, which had been calculated with mathematical phantoms. The numerical analyses for radiation dosimetry and CT machines have progressed in recent years. Thus, a project is being carried out to develop a new dosimetry system, named WAZA-ARI. The basic data of organ doses are calculated with a male voxel phantom (JM phantom), which defines configurations of the human body more precisely than the mathematical model. The radiation transports in CT examination can be simulated with the Particle and Heavy Ion Transport code System, PHITS. A source model can be set up for emissions of photons from the X-ray tube with a subroutine, including the helical scanning. Thus, the WAZA-ARI system can assess radiation dose based upon the organ doses, which are calculated with the appropriate source and human models.

Journal Articles

J-PARC muon facility, MUSE

Miyake, Yasuhiro*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Makimura, Shunsuke*; Koda, Akihiro*; Fujimori, Hiroshi*; Nakahara, Kazutaka*; Takeshita, Soshi*; Kobayashi, Yasuo*; et al.

Journal of Physics; Conference Series, 225, p.012036_1 - 012036_7, 2010/06

 Times Cited Count:9 Percentile:92.71(Physics, Applied)

Journal Articles

Possible low-energy excitations of multipoles in SmRu$$_4$$P$$_{12}$$ probed by muon spin relaxation

Ito, Takashi; Higemoto, Wataru; Oishi, Kazuki*; Heffner, R. H.; Nishida, Nobuhiko*; Sato, Kazuhiko*; Sugawara, Hitoshi*; Aoki, Yuji*; Kikuchi, Daisuke*; Sato, Hideyuki*

Physica B; Condensed Matter, 404(5-7), p.761 - 764, 2009/04

 Times Cited Count:1 Percentile:6.09(Physics, Condensed Matter)

We report on detailed longitudinal field (LF) $$mu$$SR studies in SmRu$$_4$$P$$_{12}$$ in order to characterize magnetic fluctuations in a magnetically ordered state below $$T_{rm MI}=16.5$$ K. A magnitude and fluctuation rate of the fluctuating field are derived as functions of temperature from LF dependence of the longitudinal relaxation rate. Possible low-energy excitations of magnetic multipoles are discussed.

Journal Articles

Novel features in filled skutterudites containing rare-earth elements with a plural number of 4f-electrons

Sato, Hideyuki*; Aoki, Yuji*; Kikuchi, Daisuke*; Sugawara, Hitoshi*; Higemoto, Wataru; Oishi, Kazuki; Ito, Takashi; Heffner, R. H.; Saha, S. R.*; Koda, Akihiro*; et al.

Physica B; Condensed Matter, 404(5-7), p.749 - 753, 2009/04

 Times Cited Count:5 Percentile:25.59(Physics, Condensed Matter)

Wide varieties of strongly correlated electron phenomena are performed on the stage of a filled skutterudite structure. Especially when one of the players contains a plural number of 4f electrons, the orbital degrees of freedom play a major role as a new type of nonmagnetic and/or weak-magnetic phenomena. Several examples found in Pr- and Sm-based filled skutterudites are introduced in relation to muon spin relaxation experiments.

Journal Articles

The H-Invitational Database (H-InvDB); A Comprehensive annotation resource for human genes and transcripts

Yamasaki, Chisato*; Murakami, Katsuhiko*; Fujii, Yasuyuki*; Sato, Yoshiharu*; Harada, Erimi*; Takeda, Junichi*; Taniya, Takayuki*; Sakate, Ryuichi*; Kikugawa, Shingo*; Shimada, Makoto*; et al.

Nucleic Acids Research, 36(Database), p.D793 - D799, 2008/01

 Times Cited Count:51 Percentile:71.25(Biochemistry & Molecular Biology)

Here we report the new features and improvements in our latest release of the H-Invitational Database, a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of fulllength cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 protein-coding and 642 non-protein-coding loci; 858 transcribed loci overlapped with predicted pseudogenes.

Journal Articles

Magnetic properties of SmRu$$_{4}$$P$$_{12}$$ probed by $$mu$$SR

Ito, Takashi; Higemoto, Wataru; Oishi, Kazuki; Heffner, R. H.; Nishida, Nobuhiko*; Sato, Kazuhiko*; Sugawara, Hitoshi*; Aoki, Yuji*; Kikuchi, Daisuke*; Sato, Hideyuki*

Journal of Physics and Chemistry of Solids, 68(11), p.2072 - 2075, 2007/11

 Times Cited Count:1 Percentile:7.46(Chemistry, Multidisciplinary)

no abstracts in English

Journal Articles

Progress in the ITER physics basis, 3; MHD stability, operational limits and disruptions

Hender, T. C.*; Wesley, J. C.*; Bialek, J.*; Bondeson, A.*; Boozer, A. H.*; Buttery, R. J.*; Garofalo, A.*; Goodman, T. P.*; Granetz, R. S.*; Gribov, Y.*; et al.

Nuclear Fusion, 47(6), p.S128 - S202, 2007/06

 Times Cited Count:916 Percentile:100(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Evolution of local magnetic state in SmRu$$_4$$P$$_{12}$$ probed by muon spin relaxation

Ito, Takashi; Higemoto, Wataru; Oishi, Kazuki; Fujimoto, Tatsuya*; Heffner, R. H.; Nishida, Nobuhiko*; Sato, Kazuhiko*; Sugawara, Hitoshi*; Aoki, Yuji*; Kikuchi, Daisuke*; et al.

Journal of the Physical Society of Japan, 76(5), p.053707_1 - 053707_4, 2007/05

 Times Cited Count:27 Percentile:74.93(Physics, Multidisciplinary)

A filled skutterudite compound SmRu$$_4$$P$$_{12}$$ shows metal-insulatortransition at $$T_{rm MI}$$=16.5K with magnetic anomaly. A possibility of magnetic octupole ordering has been discussed on the basis of multipole degrees of freedom belonging to thecrystalline-electric-field ground state. We investigated local magnetic states in the ordered state by using the muon spin relaxation method. An increase of muon spin relaxation rate was detected in zeroapplied field just below $$T_{rm MI}$$, indicating time-reversal-symmetry breaking in the ordered state. This result suggests that the order parameter includes magnetic octupole and/ordipole. Magnitude of the internal field at the muon site monotonically increases with decreasing temperature, growing steeply below $$T^{prime}$$=3K. The longitudinal relaxation rate has a maximum at around $$T^{prime}$$, suggesting suppression of magnetic fluctuations. We discussed these experimental facts on the basis of the multipoledegrees of freedom.

Journal Articles

Overview of national centralized tokamak program; Mission, design and strategy to contribute ITER and DEMO

Ninomiya, Hiromasa; Akiba, Masato; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hayashi, Nobuhiko; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Inoue, Nobuyuki; et al.

Journal of the Korean Physical Society, 49, p.S428 - S432, 2006/12

To contribute DEMO and ITER, the design to modify the present JT-60U into superconducting coil machine, named National Centralized Tokamak (NCT), is being progressed under nationwide collaborations in Japan. Mission, design and strategy of this NCT program is summarized.

Journal Articles

Overview of the national centralized tokamak programme

Kikuchi, Mitsuru; Tamai, Hiroshi; Matsukawa, Makoto; Fujita, Takaaki; Takase, Yuichi*; Sakurai, Shinji; Kizu, Kaname; Tsuchiya, Katsuhiko; Kurita, Genichi; Morioka, Atsuhiko; et al.

Nuclear Fusion, 46(3), p.S29 - S38, 2006/03

 Times Cited Count:13 Percentile:41.76(Physics, Fluids & Plasmas)

The National Centralized Tokamak (NCT) facility program is a domestic research program for advanced tokamak research to succeed JT-60U incorporating Japanese university accomplishments. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility and mobility is pursued in aspect ratio and shape controllability, feedback control of resistive wall modes, wide current and pressure profile control capability for the demonstration of the high-b steady state.

Journal Articles

Status of J-PARC muon science facility at the year of 2005

Miyake, Yasuhiro*; Nishiyama, Kusuo*; Kawamura, Naritoshi*; Makimura, Shunsuke*; Strasser, P.*; Shimomura, Koichiro*; Beveridge, J. L.*; Kadono, Ryosuke*; Fukuchi, Koichi*; Sato, Nobuhiko*; et al.

Physica B; Condensed Matter, 374-375, p.484 - 487, 2006/03

 Times Cited Count:6 Percentile:31.27(Physics, Condensed Matter)

The construction of the Materials and Life Science building was started in the beginning of the fiscal year of 2004. After commissioning of the accelerator and beam transport sections in 2008, muon beams will be available for users in 2009. In this letter, the latest construction status of the J-PARC Muon Science Facility is reported.

Journal Articles

Engineering design and control scenario for steady-state high-beta operation in national centralized tokamak

Tsuchiya, Katsuhiko; Akiba, Masato; Azechi, Hiroshi*; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 81(8-14), p.1599 - 1605, 2006/02

 Times Cited Count:1 Percentile:9.98(Nuclear Science & Technology)

no abstracts in English

44 (Records 1-20 displayed on this page)