Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 2038

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

MAAP code analysis for the in-vessel phase of Fukushima-Daiichi Nuclear Power Station Unit 1 and comparison of the results among Units 1 to 3

Sato, Ikken; Yoshikawa, Shinji; Yamashita, Takuya; Shimomura, Kenta; Cibula, M.*; Mizokami, Shinya*

Nuclear Engineering and Design, 422, p.113088_1 - 113088_24, 2024/06

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2022

Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Koike, Yuko; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; Nagai, Shinji; et al.

JAEA-Review 2023-046, 164 Pages, 2024/03

JAEA-Review-2023-046.pdf:4.2MB

The Nuclear Fuel Cycle Engineering Laboratories conducts environmental radiation monitoring around the reprocessing plant in accordance with the "Safety Regulations for Reprocessing Plant of JAEA, Part IV: Environmental Monitoring". This report summarizes the results of environmental radiation monitoring conducted during the period from April 2022 to March 2023 and the results of dose calculations for the surrounding public due to the release of radioactive materials into the atmosphere and ocean. In the results of the above environmental radiation monitoring, many items were affected by radioactive materials emitted from the accident at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, Incorporated (changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016), which occurred in March 2011. Also included as appendices are an overview of the environmental monitoring plan, an overview of measurement methods, measurement results and their changes over time, meteorological statistics results, radioactive waste release status, and an evaluation of the data which deviated of the normal range.

JAEA Reports

Analysis of deposits inside the reactor at Fukushima Daiichi Nuclear Power Station in JFY2021; The Subsidy program of "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris)" starting FY2021

Ikeuchi, Hirotomo; Sasaki, Shinji; Onishi, Takashi; Nakayoshi, Akira; Arai, Yoichi; Sato, Takumi; Ohgi, Hiroshi; Sekio, Yoshihiro; Yamaguchi, Yukako; Morishita, Kazuki; et al.

JAEA-Data/Code 2023-005, 418 Pages, 2023/12

JAEA-Data-Code-2023-005-01.pdf:24.59MB
JAEA-Data-Code-2023-005-02.pdf:32.18MB

For safe and steady decommissioning of Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station (1F), information concerning composition and physical/chemical properties of fuel debris generated in the reactors should be estimated and provided to other projects conducting the decommissioning work including the retrieval of fuel debris and the subsequent storage. For this purpose, in FY2021, samples of contaminants (the wiped smear samples and the deposits) obtained through the internal investigation of the 1F Unit 2 were analyzed to clarify the components and to characterize the micro-particles containing uranium originated from fuel (U-bearing particles) in detail. This report summarized the results of analyses performed in FY2021, including the microscopic analysis by SEM and TEM, radiation analysis, and elemental analysis by ICP-MS, as a database for evaluating the main features of each sample and the probable formation mechanism of the U-bearing particles.

Journal Articles

MAAP code analysis focusing on the fuel debris conditions in the lower head of the pressure vessel in Fukushima-Daiichi Nuclear Power Station Unit 3

Sato, Ikken; Yoshikawa, Shinji; Yamashita, Takuya; Shimomura, Kenta; Cibula, M.*; Mizokami, Shinya*

Nuclear Engineering and Design, 414, p.112574_1 - 112574_20, 2023/12

Journal Articles

Impact of the Ce$$4f$$ states in the electronic structure of the intermediate-valence superconductor CeIr$$_3$$

Fujimori, Shinichi; Kawasaki, Ikuto; Takeda, Yukiharu; Yamagami, Hiroshi; Sasabe, Norimasa*; Sato, Yoshiki*; Shimizu, Yusei*; Nakamura, Ai*; Maruya, A.*; Homma, Yoshiya*; et al.

Electronic Structure (Internet), 5(4), p.045009_1 - 045009_7, 2023/11

Journal Articles

Update of Bragg edge analysis software "GUI-RITS"

Oikawa, Kenichi; Sato, Hirotaka*; Watanabe, Kenichi*; Su, Y. H.; Shinohara, Takenao; Kai, Tetsuya; Kiyanagi, Yoshiaki*; Hasemi, Hiroyuki

Journal of Physics; Conference Series, 2605, p.012013_1 - 012013_6, 2023/10

Journal Articles

Development of an areal density imaging for boron and other elements

Tsuchikawa, Yusuke; Kai, Tetsuya; Abe, Yuta; Oikawa, Kenichi; Parker, J. D.*; Shinohara, Takenao; Sato, Ikken

Journal of Physics; Conference Series, 2605, p.012022_1 - 012022_6, 2023/10

We developed a method to obtain the areal density distribution of boron, which has a large neutron cross section, by means of an energy resolved neutron imaging. Commonly in a measurement of elements with very high neutron sensitivity, the quantitative measurement becomes more difficult with the amount of element due to the neutron self-shielding effect. To avoid this effect, an energy-resolved method using known cross section data was attempted, and a quantitative imaging of such elements was demonstrated at the MLF of J-PARC. This presentation introduces a measurement of melted simulated-fuel assemblies obtained in the research of the Fukushima Daiichi Nuclear Power Plant after the severe accident. Energy-dependent neutron transmission rates of the samples were measured by a neutron imaging detector, and were analyzed to obtained the areal density of boron at each position.

Journal Articles

A Terrestrial SER Estimation Methodology Based on Simulation Coupled With One-Time Neutron Irradiation Testing

Abe, Shinichiro; Hashimoto, Masanori*; Liao, W.*; Kato, Takashi*; Asai, Hiroaki*; Shimbo, Kenichi*; Matsuyama, Hideya*; Sato, Tatsuhiko; Kobayashi, Kazutoshi*; Watanabe, Yukinobu*

IEEE Transactions on Nuclear Science, 70(8, Part 1), p.1652 - 1657, 2023/08

Single event upsets (SEUs) caused by neutrons is a reliability problem for microelectronic devices in the terrestrial environment. Acceleration tests using white neutron beam provide realistic soft error rates (SERs), but only a few facilities can provide white neutron beam in the world. If single-source irradiation applicable to diverse neutron source can be utilized for the evaluation of the SER in the terrestrial environment, it contributes to solve the shortage of beam time. In this study, we investigated the feasibility of the SER estimation in the terrestrial environment by any one of these measured data with the SEU cross sections obtained by PHITS simulation. It was found that the SERs estimated by our proposed method are within a factor of 2.7 of that estimated by the Weibull function. We also investigated the effect of simplification which reduce the computational cost in simulation to the SER estimation.

Journal Articles

Comprehensive analysis and evaluation of Fukushima Daiichi Nuclear Power Station Unit 3

Yamashita, Takuya; Honda, Takeshi*; Mizokami, Masato*; Nozaki, Kenichiro*; Suzuki, Hiroyuki*; Pellegrini, M.*; Sakai, Takeshi*; Sato, Ikken; Mizokami, Shinya*

Nuclear Technology, 209(6), p.902 - 927, 2023/06

 Times Cited Count:0 Percentile:75.85(Nuclear Science & Technology)

Journal Articles

MAAP code analysis focusing on the fuel debris condition in the lower head of the pressure vessel in Fukushima-Daiichi Nuclear Power Station Unit 2

Sato, Ikken; Yoshikawa, Shinji; Yamashita, Takuya; Cibula, M.*; Mizokami, Shinya*

Nuclear Engineering and Design, 404, p.112205_1 - 112205_21, 2023/04

 Times Cited Count:0 Percentile:75.85(Nuclear Science & Technology)

Based on updated knowledge from plant-internal investigations, experiments and model simulations until now, the in-vessel phase of Fukushima-Daiichi Nuclear Power Station Unit 2 was analyzed using the MAAP code. In Unit 2, it is considered that the core material enthalpy was relatively low when it relocated to the lower plenum of the pressure vessel, then, cooled by the coolant and solidified there. Although the MAAP code tended to underestimate the degree of core-material oxidation during the relocation, this probable underestimation was compensated for by an existing study that was considered more reliable, so that more realistic debris conditions in the lower plenum could be obtained. Basic validity of the former prediction of the Unit 2 accident progression behavior was confirmed and detailed boundary condition for the later phase was provided. This boundary condition should be utilized for future studies addressing debris reheating process leading to lower head failure and debris relocation toward the pedestal.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2021

Nakada, Akira; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Futagawa, Kazuo; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; et al.

JAEA-Review 2022-078, 164 Pages, 2023/03

JAEA-Review-2022-078.pdf:2.64MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2021 to March 2022. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

Journal Articles

High-sensitive XANES analysis at Ce L$$_{2}$$-edge for Ce in bauxites using transition-edge sensors; Implications for Ti-rich geological samples

Li, W.*; Yamada, Shinya*; Hashimoto, Tadashi; Okumura, Takuma*; Hayakawa, Ryota*; Nitta, Kiyofumi*; Sekizawa, Oki*; Suga, Hiroki*; Uruga, Tomoya*; Ichinohe, Yuto*; et al.

Analytica Chimica Acta, 1240, p.340755_1 - 340755_9, 2023/02

 Times Cited Count:1 Percentile:34.31(Chemistry, Analytical)

no abstracts in English

Journal Articles

The Experimental and simulation results of LIVE-J2 test; Investigation on heat transfer in a solid-liquid mixture pool

Madokoro, Hiroshi; Yamashita, Takuya; Gaus-Liu, X.*; Cron, T.*; Fluhrer, B.*; Sato, Ikken; Mizokami, Shinya*

Nuclear Technology, 209(2), p.144 - 168, 2023/02

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Japanese Evaluated Nuclear Data Library version 5; JENDL-5

Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Abe, Yutaka*; Tsubakihara, Kosuke*; Okumura, Shin*; Ishizuka, Chikako*; Yoshida, Tadashi*; et al.

Journal of Nuclear Science and Technology, 60(1), p.1 - 60, 2023/01

 Times Cited Count:17 Percentile:99.99(Nuclear Science & Technology)

Journal Articles

Positrons and positronium in macromolecules; Consequences of different charge states

Kobayashi, Yoshinori*; Sato, Kiminori*; Yamawaki, Masato*; Michishio, Koji*; Oka, Toshitaka; Washio, Masakazu*

Radiation Physics and Chemistry, 202, p.110590_1 - 110590_6, 2023/01

 Times Cited Count:1 Percentile:71.05(Chemistry, Physical)

Because of their different charge states, positrons and positronium (Ps) behave quite differently in macromolecules. The behavior of positively charged positrons is strongly influenced by electrostatic interactions. In nonpolar macromolecules such as polyethylene, energetic positrons, if not incorporated into Ps, fall into a delocalized state. These positrons are sensitively trapped by polar groups, if any. On the other hand, charge-neutral Ps is localized in a free volume regardless of the macromolecule's chemical structure. In this study, we discuss the behavior and annihilation characteristics of positrons and Ps in various macromolecules, emphasizing their differences.

Journal Articles

Role of resonance states of muonic molecule in muon catalyzed fusion

Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Oka, Toshitaka; Okada, Shinji*; Sato, Motoyasu*

JJAP Conference Proceedings (Internet), 9, p.011003_1 - 011003_7, 2023/00

Muon catalyzed fusion ($$mu$$CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes. In the $$mu$$CF reaction, muon transfer from deuteron to triton and muonic molecular formation are rate-limiting processes. In this work, we have investigated the role of resonance states of muonic molecule in the $$mu$$CF which affects the muonic deuterium atom population. Solving simultaneous rate equations numerically by the fourth-order Runge-Kutta method, we determined the muonic molecular formation rate so that the number of fusion events reproduces a latest experimental result. It is revealed that the resonance states play a role to enhance the fusion rate by accelerating the de-excitation of the muonic atoms.

Journal Articles

Experimental and computational verifications of the dose calculation accuracy of PHITS for high-energy photon beam therapy

Kuga, Naoya*; Shiiba, Takuro*; Sato, Tatsuhiko; Hashimoto, Shintaro; Kuroiwa, Yasuyoshi*

Journal of Nuclear Science and Technology, 10 Pages, 2023/00

This study aims to verify the accuracy of PHITS in terms of photon and electron transport and provide essential data for its application in clinical dosimetry in high-energy photon beam therapy. Percentage depth dose (PDD), beam profiles, and output factor (OPF) in a water phantom with various field sizes created by a Clinac 21EX linear accelerator were measured using an ionization chamber. Experimental setups were precisely reproduced by PHITS version 3.24, and the percentage differences (%Diff) between the measured and calculated data were evaluated. The average %Diff of PDDs obtained from PHITS and measurement were within 10% and 2% in the build-up and fall-off regions, respectively. For beam profiles, the average %Diff in the plateau region was within 3%; the differences between the calculated and measured distances from the central axis to 50% dose level were within 2 mm. These differences were lower than their tolerance levels. The consistency between the PHITS and EGSnrc was better; their %Diff was within 1% in most cases. The concurrence between the PHITS and measurement shown in this study demonstrates the potential clinical application of PHITS in high-energy photon beam therapy, given its similar dose calculation accuracy compared with EGSnrc.

Journal Articles

Recent improvements of the Particle and Heavy Ion Transport code System; PHITS version 3.33

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuya, Yusuke; Matsuda, Norihiro; Hirata, Yuho; et al.

Journal of Nuclear Science and Technology, 9 Pages, 2023/00

The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.31, was recently developed and released to the public. In the new version, the compatibility with high-energy nuclear data libraries and the algorithm of the track-structure modes have been improved. In this paper, we summarize the upgraded features of PHITS3.31 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.

Journal Articles

Translational study for stereotactic body radiotherapy against non-small cell lung cancer, including oligometastases, considering cancer stem-like cells enable predicting clinical outcome from ${it in vitro}$ data

Saga, Ryo*; Matsuya, Yusuke; Sato, Hikari*; Hasegawa, Kazuki*; Obara, Hideki*; Komai, Fumio*; Yoshino, Hironori*; Aoki, Masahiko*; Hosokawa, Yoichiro*

Radiotherapy and Oncology, p.109444_1 - 109444_9, 2023/00

 Times Cited Count:0 Percentile:0(Oncology)

When treating non-small cell lung cancer (NSCLC), stereotactic body radiotherapy (SBRT) with high-dose irradiation is often utilized. The fractionation schemes and curative effects can be evaluated by mathematical models for predicting cell survival curve. Such model parameters can be determined from in vitro experiment, but they are empirically determined based on experiences in clinics. As such, there is a large gap between in vitro and clinical study. As such background, translational study between in vitro cell survival and clinical curative effects is necessary. In this study, explicitly considering existence of cancer stem-like cells (CSCs), we developed an all-in-one model for predicting both in vitro cell survival and clinical curative effects (integrated microdosimetric-kinetic (IMK) model) and performed retrospective evaluation of clinical outcomes following SBRT for NSCLC in Hirosaki University Hospital. As a result, the IMK model successfully reproduced both in vitro cell survival and the tumor control probability with various fractionation schemes (i.e., 6-10 Gy per fraction). The developed model would contribute on precisely understanding the impact of CSCs on curative effects after SBRT for NSCLC with high precision.

Journal Articles

Present status of JAEA's R&D toward HTGR deployment

Shibata, Taiju; Nishihara, Tetsuo; Kubo, Shinji; Sato, Hiroyuki; Sakaba, Nariaki; Kunitomi, Kazuhiko

Nuclear Engineering and Design, 398, p.111964_1 - 111964_4, 2022/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Japan Atomic Energy Agency (JAEA) has been promoting the research and development (R&D) of High Temperature Gas-cooled Reactor (HTGR). R&D on reactor technologies is carried out by using High Temperature engineering Test Reactor (HTTR). The HTTR was resumed without significant reinforcements in 2021. On January 2022, a safety demonstration test under the OECD/NEA LOFC project was carried out. JAEA is promoting R&D on a carbon-free hydrogen production by thermochemical water splitting Iodine-Sulfur process (IS process). JAEA conducts design study for various HTGR systems toward commercialization. A new test program about demonstration of hydrogen production by the HTTR was launched. Steam methane reforming hydrogen production system was selected for the first demonstration by 2030.

2038 (Records 1-20 displayed on this page)