Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Crystallinity in periodic nanostructure surface on Si substrates induced by near- and mid-infrared femtosecond laser irradiation

Miyagawa, Reina*; Kamibayashi, Daisuke*; Nakamura, Hirotaka*; Hashida, Masaki*; Zen, H.*; Somekawa, Toshihiro*; Matsuoka, Takeshi*; Ogura, Hiroyuki*; Sagae, Daisuke*; Seto, Yusuke*; et al.

Scientific Reports (Internet), 12, p.20955_1 - 20955_8, 2022/12

 Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)

We evaluated Laser-Induced Periodic Surface Structure (LIPSS) crystal structures using the stress imaging station at BL22XU of JAEA-BL on SPring-8. Crystallization of LIPPS was used different two types laser these are Ti:Sapphire laser (wavelength: 800 nm) and MIR-FEL (mid-infrared free electron laser, wavelength 11.4 $$mu$$m). These lasers are different in the laser pulse structure and the wavelength. We investigated on the effects of formed LIPSS crystallization using different kind of laser. Measured synchrotron X-ray energy is 30 keV and beam size is 20 $$mu$$m. Detector of diffracted X-ray is two-dimensional detector (PILATUS300K, DECTRIS). LIPSS formed using Ti:Sapphire laser has deformed structure with good crystallinity. LIPSS formed using MIR-FEL has dislocation or fault without structural stress. These results show depending on select of laser forming LIPPS structure. These information becomes important a point of the functional application of LIPSS.

Journal Articles

Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC

Hattori, Takanori; Sano, Asami; Arima, Hiroshi*; Komatsu, Kazuki*; Yamada, Akihiro*; Inamura, Yasuhiro; Nakatani, Takeshi; Seto, Yusuke*; Nagai, Takaya*; Utsumi, Wataru; et al.

Nuclear Instruments and Methods in Physics Research A, 780, p.55 - 67, 2015/04

 Times Cited Count:68 Percentile:98.97(Instruments & Instrumentation)

PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution ($$Delta$$ $$d$$/$$d$$ $$sim$$ 0.6%) and the accessible $$d$$-spacing range (0.2-8.4 ${AA}$) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.

Journal Articles

Identified charged hadron production in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.

Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06

 Times Cited Count:176 Percentile:99.41(Physics, Nuclear)

Transverse momentum distributions and yields for $$pi^{pm}, K^{pm}, p$$, and $$bar{p}$$ in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different $$sqrt{s}$$ collisions. We also present the scaling properties such as $$m_T$$ and $$x_T$$ scaling and discuss the mechanism of the particle production in $$p + p$$ collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.

Journal Articles

Azimuthal correlations of electrons from heavy-flavor decay with hadrons in $$p+p$$ and Au+Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.

Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04

 Times Cited Count:7 Percentile:49.81(Physics, Nuclear)

Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled $$p+p$$ collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to $$p+p$$ collisions.

Oral presentation

A Neutron diffraction study of phase transition in lawsonite at high pressure

Sano, Asami; Nagai, Takaya*; Iizuka, Riko*; Seto, Yusuke*; Kuribayashi, Takahiro*; Hattori, Takanori

no journal, , 

Lawsonite is a hydrous mineral which is considered as a main carrier of hydrogen in the subtucting slab. Previous single crystal X-ray diffraction and neutron diffraction studies indicate that there exist two phase transitions at low temperature. A property of low temperature is sometimes considered to be equivalent to the behavior at high pressure, and some studies pointed out the possibility of transition at high pressure. To investigate the pressure response of hydrogen bond and phase transition in lawsonite, neutron diffraction experiment was conducted. High pressure and high temperature neutron diffraction experiment was conducted by 6-ram press at J-PARC MLF. Using 6-6 type anvil with TEL size of 10 mm, neutron diffraction pattern was corrected up to 6 GPa and 800$$^{circ}$$C. In addition, hydrostatic experiment at ambient pressure was conducted using Paris-Edinburgh press. New peak was observed at 1.83${AA}$ that indicates phase transition at high pressure.

5 (Records 1-5 displayed on this page)
  • 1