Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 27

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Background radiation monitoring using manned helicopter for establishment of technique of nuclear emergency response in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2018-016, 98 Pages, 2019/02

JAEA-Technology-2018-016.pdf:18.64MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in Fukushima against nuclear emergency response. The results of monitoring around Tomari, Kashiwazaki-Kariwa and Genkai Nuclear Power Station in the fiscal 2017 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; et al.

JAEA-Technology 2018-015, 120 Pages, 2019/02

JAEA-Technology-2018-015.pdf:15.01MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. The results in the fiscal 2017 were summarized in this report. In addition, we developed and systemized the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS data error.

JAEA Reports

Background radiation monitoring using manned helicopter for establishment of technique of nuclear emergency response in the fiscal year 2016 (Contract research)

Sanada, Yukihisa; Mori, Airi; Iwai, Takeyuki; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo; Sato, Yoshiharu; et al.

JAEA-Technology 2017-035, 69 Pages, 2018/02

JAEA-Technology-2017-035.pdf:32.92MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We carried out the background monitoring around the nuclear power stations of the whole country to apply a technique of the airborne radiation monitoring that is cultivated in Fukushima as a technology of nuclear emergency response. This result of the aerial radiation monitoring using the manned helicopter around Ooi, Takahama and Ikata Nuclear Power Station and in the fiscal 2016 were summarized in the report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2016 (Contract research)

Sanada, Yukihisa; Mori, Airi; Iwai, Takeyuki; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo; Sato, Yoshiharu; et al.

JAEA-Technology 2017-034, 117 Pages, 2018/02

JAEA-Technology-2017-034.pdf:25.18MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. This result of the aerial radiation monitoring using the manned helicopter in the fiscal 2016 were summarized in the report. In addition, we developed the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS position error.

Journal Articles

Probabilistic risk assessment method development for high temperature gas-cooled reactors, 1; Project overviews

Sato, Hiroyuki; Nishida, Akemi; Ohashi, Hirofumi; Muramatsu, Ken*; Muta, Hitoshi*; Itoi, Tatsuya*; Takada, Tsuyoshi*; Hida, Takenori*; Tanabe, Masayuki*; Yamamoto, Tsuyoshi*; et al.

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04

JAEA, in conjunction with Tokyo City University, The University of Tokyo and JGC Corporation, have started development of a PRA method considering the safety and design features of HTGR. The primary objective of the project is to develop a seismic PRA method which enables to provide a reasonably complete identification of accident scenario including a loss of safety function in passive system, structure and components. In addition, we aim to develop a basis for guidance to implement the PRA. This paper provides the overview of the activities including development of a system analysis method for multiple failures, a component failure data using the operation and maintenance experience in the HTTR, seismic fragility evaluation method, and mechanistic source term evaluation method considering failures in core graphite components and reactor building.

Journal Articles

Probabilistic risk assessment method development for high temperature gas-cooled reactors, 2; Development of accident sequence analysis methodology

Matsuda, Kosuke*; Muramatsu, Ken*; Muta, Hitoshi*; Sato, Hiroyuki; Nishida, Akemi; Ohashi, Hirofumi; Itoi, Tatsuya*; Takada, Tsuyoshi*; Hida, Takenori*; Tanabe, Masayuki*; et al.

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04

This paper proposes a set of procedures for accident sequence analysis in seismic PRAs of HTGRs that can consider the unique accident progression characteristics of HTGRs. Main features of our proposed procedure are as follows: (1) Systematic analysis techniques including Master Logic Diagrams are used to ensure reasonable completeness in identification of initiating events and classification of accident sequences, (2) Information on factors that govern the accident progression and source terms are effectively reflected to the construction of event trees for delineation of accident sequences, and (3) Frequency quantification of seismically-initiated accident sequence frequencies that involve multiplepipe ruptures are made with the use of the Direct Quantification of Fault Trees by Monte Carlo (DQFM) method by a computer code SECOM-DQFM.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2015 (Contract research)

Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika*; Yamada, Tsutomu*; et al.

JAEA-Research 2016-016, 131 Pages, 2016/10

JAEA-Research-2016-016.pdf:20.59MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report.

JAEA Reports

Development of ESRAD2 program for estimation of spatial radioactivity distribution based on Kriging; User's manual

Ishigami, Tsutomu; Shimada, Taro; Seki, Masaya; Mukai, Masayuki

JAEA-Data/Code 2015-019, 122 Pages, 2015/12

JAEA-Data-Code-2015-019.pdf:3.65MB

In ensuring compliance with the criterion of site release as the final stage of termination of decommissioning of nuclear facilities, it is supposed to confirm the radioactivity concentration obtained by measurement in the site is less than or equal to the concentration corresponding to the criterion. It is needed to estimate the distribution and mean of radioactivity concentration in the evaluation unit using a number of measured data. It is further needed to compare the estimated result with the concentration corresponding to the criterion of site release and to decide if the evaluation unit should comply with the criterion. The estimated result exhibits uncertainty depending on the number of measurement points, which results in a certain probability of the occurrence of decision error according to the uncertainty. It is important to decide the number of measurement points required by revealing a relationship of the error probability to the number of measurement points for site security. We have developed the ESRAD2 (Estimation of Spatial RadioActivity Distribution program version 2), which is an extended version of the existing ESRAD, for estimating the mean of radioactivity concentration and calculating the number of measurement points required according to the error probability. This report describes a method for ensuring compliance with the criterion of site release, structure and functions, input file format, output examples, execution method of ESRAD2, and sample run with ESRAD2.

Journal Articles

Analysis of radionuclide migration with consideration of spatial and temporal change of migration parameters due to uplift and denudation

Shimada, Taro; Takeda, Seiji; Mukai, Masayuki; Munakata, Masahiro; Tanaka, Tadao

Materials Research Society Symposium Proceedings, Vol.1744, p.229 - 234, 2015/04

Integrated safety assessment methodology which analyzes radionuclide migration reflecting the spatial and temporal changes of disposal systems was developed for a geological disposal site with uplift and denudation, and then some case analyses for an assumed site with sedimentary rocks were carried out. The combination of uniform uplift and denudation has the most effect on the radionuclide migration because the groundwater flow velocity increases with decreasing the depth from the ground surface. In the case without denudation, tilted uplift has more effect than uniform uplift because flow velocity in tilted uplift increase with increasing hydraulic gradient. The long-term change of the geological structures including the uplift and denudation, the hydraulic conditions, and the recharge and outlet of the groundwater around a candidate site should be carefully investigated to determine the appropriate the place,depth and layout of the repository.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

High-speed classification of coherent X-ray diffraction Patterns on the K computer for high-resolution single biomolecule imaging

Tokuhisa, Atsushi*; Arai, Junya*; Jochi, Yasumasa*; Ono, Yoshiyuki*; Kameyama, Toyohisa*; Yamamoto, Keiji*; Hatanaka, Masayuki*; Gerofi, B.*; Shimada, Akio*; Kurokawa, Motoyoshi*; et al.

Journal of Synchrotron Radiation, 20(6), p.899 - 904, 2013/11

 Times Cited Count:5 Percentile:29.32(Instruments & Instrumentation)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2012

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.

JAEA-Review 2012-028, 31 Pages, 2012/08

JAEA-Review-2012-028.pdf:3.86MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2010

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.

JAEA-Review 2012-020, 178 Pages, 2012/06

JAEA-Review-2012-020.pdf:33.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.

Journal Articles

The H-Invitational Database (H-InvDB); A Comprehensive annotation resource for human genes and transcripts

Yamasaki, Chisato*; Murakami, Katsuhiko*; Fujii, Yasuyuki*; Sato, Yoshiharu*; Harada, Erimi*; Takeda, Junichi*; Taniya, Takayuki*; Sakate, Ryuichi*; Kikugawa, Shingo*; Shimada, Makoto*; et al.

Nucleic Acids Research, 36(Database), p.D793 - D799, 2008/01

 Times Cited Count:51 Percentile:71.37(Biochemistry & Molecular Biology)

Here we report the new features and improvements in our latest release of the H-Invitational Database, a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of fulllength cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 protein-coding and 642 non-protein-coding loci; 858 transcribed loci overlapped with predicted pseudogenes.

Journal Articles

Progress in the ITER physics basis, 1; Overview and summary

Shimada, Michiya; Campbell, D. J.*; Mukhovatov, V.*; Fujiwara, Masami*; Kirneva, N.*; Lackner, K.*; Nagami, Masayuki; Pustovitov, V. D.*; Uckan, N.*; Wesley, J.*; et al.

Nuclear Fusion, 47(6), p.S1 - S17, 2007/06

 Times Cited Count:717 Percentile:99.93(Physics, Fluids & Plasmas)

The Progress in the ITER Physics Basis document is an update of the ITER Physics Basis (IPB), which was published in 1999. The IPB provided methodologies for projecting the performance of burning plasmas, developed largely through coordinated experimental, modeling and theoretical activities carried out on today's tokamaks (ITER Physics R&D). In the IPB, projections for ITER (1998 Design) were also presented. The IPB also pointed out some outstanding issues. These issues have been addressed by the International Tokamak Physics Activities (ITPA), which were initiated by the European Union, Japan, Russia and the U.S.A.. The new methodologies of projection and control developed through the ITPA are applied to ITER, which was redesigned under revised technical objectives, but will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy.

JAEA Reports

Inhibition of sensitization in reactor pipe materials by grain boundary structure control, JAERI's nuclear research promotion program, H11-023 (Contract research)

Kokawa, Hiroyuki*; Shimada, Masayuki*; Wang, Z.*; Sato, Yutaka*; Sato, Yoshihiro*; Kiuchi, Kiyoshi

JAERI-Tech 2003-014, 22 Pages, 2003/03

JAERI-Tech-2003-014.pdf:1.68MB

no abstracts in English

Journal Articles

Fusion plasma performance and confinement studies on JT-60 and JT-60U

Kamada, Yutaka; Fujita, Takaaki; Ishida, Shinichi; Kikuchi, Mitsuru; Ide, Shunsuke; Takizuka, Tomonori; Shirai, Hiroshi; Koide, Yoshihiko; Fukuda, Takeshi; Hosogane, Nobuyuki; et al.

Fusion Science and Technology (JT-60 Special Issue), 42(2-3), p.185 - 254, 2002/09

 Times Cited Count:33 Percentile:48.48(Nuclear Science & Technology)

With the main aim of providing physics basis for ITER and the steady-state tokamak reactors, JT-60/JT-60U has been developing and optimizing the operational concepts, and extending the discharge regimes toward sustainment of high integrated performance in the reactor relevant parameter regime. In addition to achievement of the equivalent break-even condition (QDTeq up to 1.25) and a high fusion triple product = 1.5E21 m-3skeV, JT-60U has demonstrated the integrated performance of high confinement, high beta-N, full non-inductive current drive with a large fraction of bootstrap current in the reversed magnetic shear and in the high-beta-p ELMy H mode plasmas characterized by both internal and edge transport barriers. The key factors in optimizing these plasmas are profile and shape controls. As represented by discovery of various Internal Transport Barriers, JT-60/JT-60U has been emphasizing freedom and restriction of profiles in various confinement modes. JT-60U has demonstrated applicability of these high confinement modes to ITER and also clarified remaining issues.

Journal Articles

First test results for the ITER central solenoid model coil

Kato, Takashi; Tsuji, Hiroshi; Ando, Toshinari; Takahashi, Yoshikazu; Nakajima, Hideo; Sugimoto, Makoto; Isono, Takaaki; Koizumi, Norikiyo; Kawano, Katsumi; Oshikiri, Masayuki*; et al.

Fusion Engineering and Design, 56-57, p.59 - 70, 2001/10

 Times Cited Count:17 Percentile:74.89(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Progress of the ITER central solenoid model coil programme

Tsuji, Hiroshi; Okuno, Kiyoshi*; Thome, R.*; Salpietro, E.*; Egorov, S. A.*; Martovetsky, N.*; Ricci, M.*; Zanino, R.*; Zahn, G.*; Martinez, A.*; et al.

Nuclear Fusion, 41(5), p.645 - 651, 2001/05

 Times Cited Count:55 Percentile:83.06(Physics, Fluids & Plasmas)

no abstracts in English

27 (Records 1-20 displayed on this page)