Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 121

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Chiral Dirac fermion in a collinear antiferromagnet

Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; Shimada, Kenya*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.

Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12

Journal Articles

Development of an iron(II) complex exhibiting thermal- and photoinduced double proton-transfer-coupled spin transition in a short hydrogen bond

Nakanishi, Takumi*; Hori, Yuta*; Shigeta, Yasuteru*; Sato, Hiroyasu*; Kiyanagi, Ryoji; Munakata, Koji*; Ohara, Takashi; Okazawa, Atsushi*; Shimada, Rintaro*; Sakamoto, Akira*; et al.

Journal of the American Chemical Society, 145(35), p.19177 - 19181, 2023/08

Journal Articles

New design of high power mercury target vessel of J-PARC

Wakui, Takashi; Wakai, Eiichi; Kogawa, Hiroyuki; Naoe, Takashi; Hanano, Kohei*; Haga, Katsuhiro; Shimada, Tsubasa*; Kanomata, Kenichi*

Materials Science Forum, 1024, p.145 - 150, 2021/03

To realize a high beam power operation at the J-PARC, a mercury target vessel covered with water shroud was developed. In the first step, to realize an operation at 500 kW, the basic structure of the initial design was followed and the connection method between the mercury vessel and the water shroud was changed. Additionally, the operation at a beam power of 500 kW was realized in approximately eight months. In the second step, to realize the operation at 1 MW, the new structure in which only rear ends of vessels were connected was investigated. Cooling of the mercury vessel is used to reduce thermal stress and thick vessels of the water shroud are used to increase stiffness for the internal pressure; therefore, it was adopted. The stress in each vessel was lower than the allowable stress based on the pressure vessel code criteria prescribed in the Japan Industrial Standard, and confirmation was obtained that the operation with a beam power of 1 MW could be conducted.

Journal Articles

New design and fabrication technology applied in mercury target vessel #8 of J-PARC

Wakui, Takashi; Wakai, Eiichi; Kogawa, Hiroyuki; Naoe, Takashi; Hanano, Kohei; Haga, Katsuhiro; Takada, Hiroshi; Shimada, Tsubasa*; Kanomata, Kenichi*

JPS Conference Proceedings (Internet), 28, p.081002_1 - 081002_6, 2020/02

A mercury target vessel of J-PRAC is designed with a triple-walled structure consisting of the mercury vessel and a double-walled water shroud with internal and external vessels. During the beam operation at 500 kW in 2015, small water leakages from a water shroud of the mercury target vessel occurred twice. Design, fabrication and inspection processes were improved based on the lessons learned from the target failures. The total length of welding lines at the front of the mercury target vessel decreases drastically to approximately 55% by adopting monolithic structure cut out from a block of stainless steel by the wire-electrical discharge machining. Thorough testing of welds by radiographic testing and ultrasonic testing was conducted. The fabrication of the mercury target vessel #8 was finished on September 2017 and the beam operation using it started. Stable beam operation at 500 kW has been achieved and it could experience the maximum beam power of 1 MW during a beam test.

JAEA Reports

Development of $$^{93}$$Zr, $$^{93}$$Mo, $$^{107}$$Pd and $$^{126}$$Sn analytical methods for radioactive waste from Fukushima Daiichi Nuclear Power Station

Aono, Ryuji; Sato, Yoshiyuki; Shimada, Asako; Tanaka, Kiwamu; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Technology 2017-025, 32 Pages, 2017/11

JAEA-Technology-2017-025.pdf:1.45MB

We have developed analytical methods for $$^{93}$$Zr, $$^{93}$$Mo, $$^{107}$$Pd and $$^{126}$$Sn, which are considered important in terms of the safety assessment of radioactive waste disposal. The methods are specialized for the wastes left after Fukushima accident. As the main analytical sample, we assumed accumulated water / treated water collected at Fukushima Daiichi Nuclear Power Station. As for $$^{93}$$Zr, $$^{93}$$Mo, $$^{107}$$Pd and $$^{126}$$Sn contained in this accumulated water / treated water, we have worked on the development of separation and purification method of target nuclide and improvement of recovery, and summarized these results in this report.

Journal Articles

Non-aqueous selective synthesis of orthosilicic acid and its oligomers

Igarashi, Masayasu*; Matsumoto, Tomohiro*; Yagihashi, Fujio*; Yamashita, Hiroshi*; Ohara, Takashi; Hanashima, Takayasu*; Nakao, Akiko*; Moyoshi, Taketo*; Sato, Kazuhiko*; Shimada, Shigeru*

Nature Communications (Internet), 8, p.140_1 - 140_8, 2017/07

 Times Cited Count:25 Percentile:64.44(Multidisciplinary Sciences)

Journal Articles

Corrigendum: Beam range estimation by measuring bremsstrahlung (2012 Phys. Med. Biol. 57 2843)

Yamaguchi, Mitsutaka; Torikai, Kota*; Kawachi, Naoki; Shimada, Hirofumi*; Sato, Takahiro; Nagao, Yuto; Fujimaki, Shu; Kokubun, Motohide*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.

Physics in Medicine & Biology, 61(9), p.3638 - 3644, 2016/05

 Times Cited Count:9 Percentile:100(Engineering, Biomedical)

no abstracts in English

Journal Articles

Detection of a gas region in a human body across a therapeutic carbon beam by measuring low-energy photons

Yamaguchi, Mitsutaka; Nagao, Yuto; Kawachi, Naoki; Sato, Takahiro; Fujimaki, Shu; Kamiya, Tomihiro; Torikai, Kota*; Shimada, Hirofumi*; Sugai, Hiroyuki*; Sakai, Makoto*; et al.

International Journal of PIXE, 26(1&2), p.61 - 72, 2016/00

no abstracts in English

Journal Articles

Influence of discontinuous columnar defects on flux pinning properties in GdBCO coated conductors

Sueyoshi, Tetsuro*; Kotaki, Tetsuya*; Furuki, Yuichi*; Uraguchi, Yusei*; Kai, Takashi*; Fujiyoshi, Takanori*; Shimada, Yusuke*; Yasuda, Kazuhiro*; Ishikawa, Norito

IEEE Transactions on Applied Superconductivity, 25(3), p.6603004_1 - 6603004_4, 2015/06

 Times Cited Count:11 Percentile:50.77(Engineering, Electrical & Electronic)

To investigate the effect of discontinuity of 1-D pinning centers on the flux pinning in a wide range of magnetic field directions, discontinuous columnar defects (CDs) and continuous CDs were formed in GdBCO coated conductors using Xe-ion irradiations with 80 and 270 MeV, respectively. An overall shift upward in Jc, for the 80-MeV-irradiated sample compared to the 270-MeV-irradiated one, can be observed in every direction of magnetic field, which is more remarkable as temperature decreases. This implies a synergetic effect of the pinning interaction between the linearity and the discontinuity for the discontinuous CDs.

Journal Articles

Analysis on effects of transverse electric field in an injector cavity of compact-ERL at KEK

Hwang, J.-G.*; Kim, E.-S.*; Miyajima, Tsukasa*; Honda, Yosuke*; Harada, Kentaro*; Shimada, Miho*; Takai, Ryota*; Kume, Tatsuya*; Nagahashi, Shinya*; Obina, Takashi*; et al.

Nuclear Instruments and Methods in Physics Research A, 753, p.97 - 104, 2014/07

 Times Cited Count:7 Percentile:48.56(Instruments & Instrumentation)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

High-speed classification of coherent X-ray diffraction Patterns on the K computer for high-resolution single biomolecule imaging

Tokuhisa, Atsushi*; Arai, Junya*; Jochi, Yasumasa*; Ono, Yoshiyuki*; Kameyama, Toyohisa*; Yamamoto, Keiji*; Hatanaka, Masayuki*; Gerofi, B.*; Shimada, Akio*; Kurokawa, Motoyoshi*; et al.

Journal of Synchrotron Radiation, 20(6), p.899 - 904, 2013/11

 Times Cited Count:5 Percentile:29.32(Instruments & Instrumentation)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

In-plane orientation control of 2,7-diphenyl[1]benzothieno[3,2-$$b$$][1]benzothiophene monolayer on bismuth-terminated Si(111) vicinal surfaces with wettability optimization

Otomo, Manabu; Tsuchida, Yuya*; Muraya, Naoki*; Yanase, Takashi*; Sakai, Seiji; Yonezawa, Tetsu*; Nagahama, Taro*; Hasegawa, Tetsuya*; Shimada, Toshihiro*

Journal of Physical Chemistry C, 117(22), p.11555 - 11561, 2013/06

 Times Cited Count:2 Percentile:8.76(Chemistry, Physical)

We report in-plane orientation control of newly developed high-mobility organic semiconductor: 2,7-diphenyl[1]benzothieno[3,2-$$b$$][1]benzothiophene (DPh-BTBT). As previously reported on monolayer pentacene, it was revealed that bunched steps on vicinal Si(111) with bismuth termination break the surface symmetry and reduce three-fold symmetry of DPh-BTBT grains into quasi-single orientation. Interestingly, the critical step height necessary for the orientation control was different from that of pentacene. We examined several mechanisms of orientation control and concluded that the facet nano structure fabricated by step bunching is working as an anisotropic template. We will also show the wettability control of bismuth terminated silicon surface and show that the growth mode of DPh-BTBT is dependent on the surface nanostructure of Bi-Si.

Journal Articles

Three-dimensional and multienergy $$gamma$$-ray simultaneous imaging by using a Si/CdTe Compton camera

Suzuki, Yoshiyuki*; Yamaguchi, Mitsutaka; Odaka, Hirokazu*; Shimada, Hirofumi*; Yoshida, Yukari*; Torikai, Kota*; Sato, Takahiro; Arakawa, Kazuo*; Kawachi, Naoki; Watanabe, Shigeki; et al.

Radiology, 267(3), p.941 - 947, 2013/06

 Times Cited Count:23 Percentile:65.26(Radiology, Nuclear Medicine & Medical Imaging)

Journal Articles

An Evaluation of three-dimensional imaging by use of Si/CdTe Compton cameras

Yamaguchi, Mitsutaka; Nagao, Yuto; Kawachi, Naoki; Fujimaki, Shu; Kamiya, Tomihiro; Odaka, Hirokazu*; Kokubun, Motohide*; Takeda, Shinichiro*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.

Proceedings of 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 3 Pages, 2013/00

Journal Articles

A New method for monitoring beam range by measuring low energy photons

Yamaguchi, Mitsutaka; Torikai, Kota*; Kawachi, Naoki; Shimada, Hirofumi*; Sato, Takahiro; Nagao, Yuto; Fujimaki, Shu; Kokubun, Motohide*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.

Proceedings of 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2 Pages, 2013/00

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2012

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.

JAEA-Review 2012-028, 31 Pages, 2012/08

JAEA-Review-2012-028.pdf:3.86MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.

Journal Articles

Erosion of $$N$$=20 shell in $$^{33}$$Al investigated through the ground-state electric quadrupole moment

Shimada, Kenji*; Ueno, Hideki*; Neyens, G.*; Asahi, Koichiro*; Balabanski, D. L.*; Daugas, J. M.*; Depuydt, M.*; De Rydt, M.*; Gaudefroy, L.*; Gr$'e$vy, S.*; et al.

Physics Letters B, 714(2-5), p.246 - 250, 2012/08

 Times Cited Count:7 Percentile:41.42(Astronomy & Astrophysics)

no abstracts in English

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2010

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.

JAEA-Review 2012-020, 178 Pages, 2012/06

JAEA-Review-2012-020.pdf:33.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.

121 (Records 1-20 displayed on this page)