Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 229

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Preliminary measurement of prompt gamma-ray from nuclear material for the classification of fuel debris and waste

Shiba, Tomooki; Kaburagi, Masaaki; Nomi, Takayoshi; Suzuki, Risa; Kosuge, Yoshihiro*; Nauchi, Yasushi*; Takada, Akira*; Nagatani, Taketeru; Okumura, Keisuke

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 3 Pages, 2022/10

Journal Articles

Study on identification of materials in fuel debris and waste by neutron induced gamma ray spectroscopy

Nauchi, Yasushi*; Nomi, Takayoshi; Suzuki, Risa; Kosuge, Yoshihiro*; Shiba, Tomooki; Takada, Akira*; Kaburagi, Masaaki; Okumura, Keisuke

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 4 Pages, 2022/10

Journal Articles

Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Tachihara, Joji; Takato, Kiyoto; Okita, Takatoshi; Satone, Hiroshi*; Suzuki, Michitaka*

Mechanical Engineering Journal (Internet), 8(3), p.21-00022_1 - 21-00022_9, 2021/06

To reduce the hold-up of the nuclear fuel materials in the glove box and the external exposure dose, the technology of the MOX powder adhesion prevention by the nanoparticle coating to the acrylic panels of the glove box has been developed. The surface analysis by means of atomic force microscopy (AFM) showed that the acrylic test piece surface coated with nanoparticles had a higher root mean square roughness value than that non-coated with nanoparticles. Due to the formation of nano-sized tiny rugged surface, the nanoparticle coating reduced the minimum adhesion force between the UO$$_{2}$$ particles and the acrylic test piece surface with the smallest particle size of about 5 $$mu$$m where desorption was observed, by about one-tenth. Moreover, the nanoparticle coating reduced the amount of the MOX powder adhering to the acrylic test piece to about one-tenth. In this study, it was found that applying the nanoparticle coating to the acrylic panels of glove box can prevent the adhesion of nuclear fuel materials. This method is effective for reducing the hold-up of the nuclear fuel materials in the glove box, the external exposure dose and improving the visibility of the acrylic panels.

Journal Articles

Evaluation of the characteristics of metal nitrate aqueous solutions by microwave heating and the morphologies of synthesized metal oxide powders

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Fukasawa, Tomonori*; Fukui, Kunihiro*

Funtai Kogakkai-Shi, 57(9), p.485 - 494, 2020/09

In the spent fuel reprocessing process, a mixed solution of uranyl nitrate and plutonium nitrate is converted into mixed oxide powder by the microwave heating. To evaluate the applicability to the industrial-scale and acquire the characteristics data of the microwave heating denitration of various metal nitrate aqueous solutions based on the knowledge studied in the development of laboratory-scale basic experiments, the microwave heating characteristics and metal oxide powder properties were investigated using cerium nitrate, cobalt nitrate and copper nitrate aqueous solutions. The progress rate of the denitration reaction was depended on the position, and the denitration reaction proceeded faster at the periphery than at the center. The morphologies of the synthesized products were porous and hard dry solid with cerium nitrate aqueous solution, foamed dry solid with cobalt nitrate aqueous solution, and powdery particles with copper nitrate aqueous solution. The denitration ratio and average particle size of the synthesized products increased in the order of the cerium nitrate aqueous solution, the cobalt nitrate aqueous solution, and the copper nitrate aqueous solution. The numerical simulations revealed that the periphery of the bottom surface of the metal nitrate aqueous solution was heated by microwaves. This results consistent with the experimental results in which the denitration reaction started from the periphery of the metal nitrate aqueous solution.

Journal Articles

Preventing nuclear fuel material adhesion on glove box components using nanoparticle coating

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Tachihara, Joji; Takato, Kiyoto; Okita, Takatoshi; Satone, Hiroshi*; Suzuki, Michitaka*

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

To reduce the hold-up of the nuclear fuel materials in the glove box and the external exposure dose, the technology of the MOX powder adhesion prevention by the nanoparticle coating to the acrylic panels of the glove box has been developed. Due to the formation of nano-sized tiny rugged surface, the nanoparticle coating reduced the minimum adhesion force between the UO$$_{2}$$ particles and the acrylic test piece surface with the smallest particle size of about 5 $$mu$$m where desorption was observed, by about one-tenth. Moreover, the nanoparticle coating reduced the amount of the MOX powder adhering to the acrylic test piece to about one-tenth. In this study, it was found that applying the nanoparticle coating to the acrylic panels of glove box can prevent the adhesion of nuclear fuel materials. This method is effective for reducing the hold-up of the nuclear fuel materials in the glove box, the external exposure dose and improving the visibility of the acrylic panels.

Journal Articles

Study on optimizing microwave heating denitration method and powder characteristics of uranium trioxide

Segawa, Tomoomi; Kawaguchi, Koichi; Kato, Yoshiyuki; Ishii, Katsunori; Suzuki, Masahiro; Fujita, Shunya*; Kobayashi, Shohei*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05

A solution of plutonium nitrate and uranyl nitrate is converted into a mixed oxide by microwave heating denitration method. In the present study, for improving the efficiency of microwave heating and achieving high-temperature uniformity to produce homogeneous UO$$_{3}$$ powder, the microwave heating test of potassium chloride and uranyl nitrate solution, and numerical simulation analysis were conducted. The potassium chloride agar was adjusted to the dielectric loss, which is close to that of the uranyl nitrate solution and the optimum support table height was estimated to be 50 mm for denitration of the uranyl nitrate solution by microwave heating. The adiabator improved the efficiency of microwave heating denitration. Moreover, the powder yield was improved by using the adiabator owing to ease of scraping of the denitration product from the bottom of the denitration vessel.

Journal Articles

Development of granulation system for simplified MOX pellet fabrication process

Ishii, Katsunori; Segawa, Tomoomi; Kawaguchi, Koichi; Suzuki, Masahiro

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 5 Pages, 2019/05

Japan Atomic Energy Agency (JAEA) is developing a simplified pelletizing process for MOX fuel fabrication. In this process, the flowability of MOX powder produced by de-nitration conversion based on microwave heating, calcination, and reduction is improved using the wet granulation method. In a previous paper, to produce MOX granules of appropriate sizes for pelletizing them effectively, we proposed a granulation system composed of a wet granulator and a sizing machine. In the present work, we modernized the wet granulator, completed the granulation system by adding auxiliary equipment, and conducted performance tests of the granulation system with WO$$_{3}$$ powder. The results of a performance test indicated that it is possible to convert raw powder into granules characterized by appropriate size and excellent flowability. The time required to process 5 kg of WO$$_{3}$$ powder was about 70 min, which almost satisfies the target time.

Journal Articles

Influence of the heating method on the particle characteristics of copper oxide powders synthesized from copper nitrate aqueous solutions

Segawa, Tomoomi; Fukasawa, Tomonori*; Huang, A.-N.*; Yamada, Yoshikazu; Suzuki, Masahiro; Fukui, Kunihiro*

Chemical Engineering Science, 153, p.108 - 116, 2016/10

 Times Cited Count:7 Percentile:26.49(Engineering, Chemical)

The influence of the heating method and rate on the morphology of CuO powders synthesized from Cu(NO$$_{3}$$)$$_{2}$$$$cdot$$3H$$_{2}$$O aqueous solutions by denitration was investigated. The median diameter of the obtained powder was found to decrease as the heating rate increased, independent of the heating method. The microwave heating method remarkably reduced the particle size and enhanced the irregularity and disorder of the shape and surface of the particles, which were found to be more widely distributed. In contrast, the microwave hybrid heating method yielded the most spherical particles with the smoothest surface. It was also found that this heating method sharpened the particle size distribution and had higher energy efficiency than the MW method. Numerical simulations also indicated a difference in the energy efficiency between these two methods. The simulations also revealed that the hybrid method could heat the whole reactor more uniformly with a lower microwave output.

Journal Articles

The Role of nitric oxide in radiation-induced bystander cell-killing effect

Yokota, Yuichiro; Funayama, Tomoo; Ikeda, Hiroko; Sakashita, Tetsuya; Suzuki, Michiyo; Kobayashi, Yasuhiko

JAEA-Review 2015-022, JAEA Takasaki Annual Report 2014, P. 67, 2016/02

The role of nitric oxide (NO) in bystander effect was investigated. Human fibroblasts were irradiated with $$gamma$$-rays (LET: 0.2 keV/$$mu$$m) or carbon-ion beam (108 keV/$$mu$$m), and then, co-cultured with the non-irradiated cells. After 24 h culture, the survival rates of non-irradiated cells and the concentrations of nitrate, an oxide of NO, in the medium were measured. The survival rates of non-irradiated cells decreased in dose-dependent and radiation quality-independent manners. Negative relationships between survival rates and nitrite concentrations existed, indicating the amounts of produced NO are an important determinant of bystander effects. Next, a reagent producing two molecules of NO in a half-life of 100 min was added in the culture medium. After incubation of 24 h the survival rates of treated cells did not decrease, suggesting NO produced intracellularly has an important role to lead the bystander effect but is not the signal molecule for intercellular communication.

Journal Articles

Influence of heating method on size and morphology of metallic oxide powder synthesized from metallic nitrate solution

Segawa, Tomoomi; Fukasawa, Tomonori*; Yamada, Yoshikazu; Suzuki, Masahiro; Yoshida, Hideto*; Fukui, Kunihiro*

Proceedings of Asian Pacific Confederation of Chemical Engineering 2015 (APCChE 2015), 8 Pages, 2015/09

A mixed solution of uranyl nitrate and plutonium nitrate is converted to MOX raw powder by the microwave heating de-nitration method in nuclear reprocessing. Copper oxide synthesized by heating de-nitration was used as a model for the de-nitration process. The microwave heating method (MW) and infrared heating method (IR) were used, and how they and their heating rate influence the obtained particle morphology and size were investigated. The particles obtained by the MW and IR were sufficiently similar in the surface morphology and the mass median diameter was decreased by the increased heating rate. The mass median diameters by the MW were the heating rate and smaller than those obtained by IR. The particle size distribution of the particle obtained by the MW was broader than that by the IR. The relationship of the temperature distribution and particle size distribution by the MW was discussed by the numerical simulation.

Journal Articles

A Mathematical model of radiation-induced responses in a cellular population including cell-to-cell communications

Hattori, Yuya; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Yokoya, Akinari; Watanabe, Ritsuko

Radiation Protection Dosimetry, 166(1-4), p.142 - 147, 2015/09

 Times Cited Count:5 Percentile:39.96(Environmental Sciences)

Cell-to-cell communication is one of the important factors to understand the mechanisms of radiation-induced responses such as radiation-induced bystander effects at low doses. In the present study, we propose simulation-based analyses of the intercellular signal transmissions between the individual cells in the cellular population. We developed the transmissions of two types of signals, i.e., X is transmitted via culture medium and Y is transmitted via gap junctions based on the diffusion equation. To observe the cell cycle as the response of cell induced by the signals, X and Y, we represented the cell cycle as a virtual clock including several check-point pathways and the cyclic process (G1, S, G2, M phases). The cellular population was divided into the grids (cells), and the signals and the clock were calculated for each grid. The signals, X, Y, were transmitted to the cells and stopped the clocks at the check points. Furthermore, the radiation was modeled as the radiation signal, Z, which affected the clock and the signals, X and Y. We input the radiation signal, Z, to specific cells, and simulated the behaviors of the clock of each cell and signals, X and Y. We will discuss the usefulness of our model for investigating the mechanisms of radiation-induced responses of the cell cycle via cell-to-cell communications.

Journal Articles

Nickel oxide powder synthesis from aqueous solution of nickel nitrate hexahydrate by a microwave denitration method

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Arimitsu, Naoki*; Yoshida, Hideto*; Fukui, Kunihiro*

Advanced Powder Technology, 26(3), p.983 - 990, 2015/05

 Times Cited Count:8 Percentile:27.86(Engineering, Chemical)

Denitration of the aqueous solution of nickel nitrate hexahydrate (Ni(NO$$_{3}$$)$$_{2}$$$$cdot$$6H$$_{2}$$O) by a microwave heating method was investigated. Since Ni(NO$$_{3}$$)$$_{2}$$$$cdot$$6H$$_{2}$$O aqueous solution cannot be heated to over 300 $$^{circ}$$C by microwave irradiation owing to the low microwave absorptivity of its intermediate, NiO could not previously be obtained by microwave heating. We propose a novel NiO synthesis method that uses microwave heating without the risk of chemical contamination. A NiO powder reagent was added to the solution as a microwave acceptor. The denitration efficiency to NiO could be improved by an adiabator around the reactor to increase the temperature homogeneity in the reactor. Numerical simulations also reveal that the use of the adiabator results in remarkable changes in the electromagnetic field distribution in the reactor, temperature inhomogeneity decreases.

Journal Articles

Responses of the salt chemotaxis learning in ${it C. elegans}$ mutants to microbeam irradiation

Sakashita, Tetsuya; Suzuki, Michiyo; Hattori, Yuya; Ikeda, Hiroko; Muto, Yasuko*; Yokota, Yuichiro; Funayama, Tomoo; Hamada, Nobuyuki*; Shirai, Kana*; Kobayashi, Yasuhiko

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 74, 2015/03

An increasing body of data indicates that ionizing radiation affects the nervous system and alters its function. Recently, we reported that chemotaxis of ${it C. elegans}$ during the salt chemotaxis learning (SCL), that is conditioned taste aversion to NaCl, was modulated by carbon ion irradiation, i.e. accelerated decrease in chemotaxis to NaCl during the SCL. However, we had no direct evidence for the interaction of ionizing radiation with the central neuronal tissue (nerve ring) in ${it C. elegans}$. Microbeam irradiation is useful to analyze direct radiation effects at a cellular or tissue level. Thus, we applied the microbeam irradiation of the ${it C. elegans}$ nerve ring and examined the effect on the SCL.

Journal Articles

Effects of carbon-ion microbeam irradiation on locomotion and pharyngeal pumping motion in $textit{C. elegans}$

Suzuki, Michiyo; Hattori, Yuya; Sakashita, Tetsuya; Funayama, Tomoo; Yokota, Yuichiro; Ikeda, Hiroko; Kobayashi, Yasuhiko

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 88, 2015/03

Journal Articles

Bystander effect mediated by nitric oxide depends on irradiation dose but not on radiation quality

Yokota, Yuichiro; Funayama, Tomoo; Ikeda, Hiroko; Sakashita, Tetsuya; Suzuki, Michiyo; Kobayashi, Yasuhiko

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 75, 2015/03

We investigated the bystander effect induced by $$gamma$$-rays or carbon ions and analyzed the role of nitric oxide (NO) in the effect. Normal human fibroblasts were used. Cells inoculated on a porous membrane were irradiated with varying doses of $$gamma$$-rays or carbon ions. Irradiated cells were then non-contact co-cultured with non-irradiated cells for 24 h. After co-culture, the survival rates of non-irradiated bystander cells co-cultured with irradiated cells decreased with increasing dose and bottomed out at 0.5 Gy or higher doses. This indicates that the bystander effect is dependent on irradiation dose but independent of radiation quality. Next, a specific NO scavenger c-PTIO was added to the culture medium during irradiation and co-culture. This treatment prevented the reduction in survival rates of bystander cells, clearly indicating that NO has an important role in the bystander effect.

Journal Articles

Target irradiation of individual cells using focusing heavy-ion microbeam of JAEA-Takasaki, 5; Irradiation of individual cells with scanned heavy-ion microbeam

Funayama, Tomoo; Yokota, Yuichiro; Suzuki, Michiyo; Sakashita, Tetsuya; Kobayashi, Yasuhiko

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 73, 2015/03

Using a collimating heavy-ion microbeam system, we have explored various effects of heavy-ion hit on biological materials. However, there are limitations of the collimating system in the size of the microbeam spot and in the irradiation speed that cannot be overcome in principle. Thus, we started the development of a focusing microbeam system for target-irradiating individual cells more precisely. In this year, we established the protocol for irradiating "actual" cell sample with scanned beam. In the experiment, the HeLa cells were inoculated on a CR-39 film, then place on the sample stage. The microscopic image of cells was analyzed, and the cells were irradiated with scanned neon microbeam. After irradiation, we found the correspondence of the distribution pattern of the ion hit positions and the $$gamma$$-H2AX foci on cell nuclei, indicating rapid and accurate irradiation of individual cells with the focusing heavy-ion microbeam.

Journal Articles

Mechanisms for the induction of radioadaptive response by radiation-induced bystander response

Matsumoto, Hideki*; Tomita, Masanori*; Otsuka, Kensuke*; Hatashita, Masanori*; Maeda, Munetoshi*; Funayama, Tomoo; Yokota, Yuichiro; Suzuki, Michiyo; Sakashita, Tetsuya; Ikeda, Hiroko; et al.

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 76, 2015/03

The objective of this project is to elucidate molecular mechanisms for the induction of radioadaptive response through radiation-induced bystander responses induced by irradiation with heavy ion microbeams in JAEA. We found that the adaptive response was induced by Ar (520 MeV $$^{40}$$Ar$$^{14+}$$) microbeam-irradiation of a limited number of cells, followed by the broad beam-irradiation and that the adaptive response was almost completely suppressed by the addition of carboxy-PTIO, as a nitric oxide (NO) scavenger. In addition, we found several genes induced specifically and preferentially when radioadaptive response could be induced. We confirmed that ${it iNOS}$ expression was specifically induced only when radioadaptive response could be induced. Our findings strongly suggested that radioadaptive response can be induced by NO-mediated bystander responses evoked by irradiation with heavy ion microbeams.

Journal Articles

Analysis of bystander response in 3D cultured tissue induced by heavy-ion microbeam irradiation

Tomita, Masanori*; Matsumoto, Hideki*; Otsuka, Kensuke*; Funayama, Tomoo; Yokota, Yuichiro; Suzuki, Michiyo; Sakashita, Tetsuya; Kobayashi, Yasuhiko

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 77, 2015/03

Radiation-induced bystander responses are defined as responses in cells that have not been directly targeted by radiation but are in the neighborhood of cells that have been directly exposed. In this study, we aim to clarify a role of bystander response to sustain the homeostasis of damaged tissue using heavy-ion microbeams. We established the heavy-ion microbeam irradiation method to a 3D cultured human epidermis. Using this method, a viable cell rate of the 3D cultured human epidermis irradiated with 260 MeV $$^{20}$$Ne-ion microbeams or broadbeams was analyzed by the MTT method.

Journal Articles

Ion-species dependent bystander mutagenic effect on ${it HPRT}$ locus in normal human fibroblasts induced by C-, Ne- and Ar-ion microbeams

Suzuki, Masao*; Funayama, Tomoo; Yokota, Yuichiro; Muto, Yasuko*; Suzuki, Michiyo; Ikeda, Hiroko; Hattori, Yuya; Kobayashi, Yasuhiko

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 78, 2015/03

We have been studying the radiation-quality dependent bystander cellular effects, such as cell killing, mutation induction and chromosomal damage, using heavy-ion microbeams with different ion species. This year we focused on the ion-species dependent bystander mutagenic effect on ${it HPRT}$ locus in normal human fibroblasts. The confluent culture were irradiated using a 256 (16$$times$$16)-cross-stripe method using C, Ne and Ar microbeam. Gene mutation on ${it HPRT}$ locus was detected with 6-thioguanine resistant clones. The mutation frequency in cells irradiated with C-ion microbeams was 6 times higher than that of non-irradiated control cells and of the sample treated with specific inhibitor of gap-junction cell-to-cell communication. On the other hand, no enhanced mutation frequencies were observed in cells irradiated with either Ne- or Ar-ion microbeams. There is clear evidence that the bystander mutagenic effect via gap-junction communication depends on radiation quality.

Journal Articles

Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions; The Relevance to cancer risk

Autsavapromporn, N.*; Plante, I.*; Liu, C.*; Konishi, Teruaki*; Usami, Noriko*; Funayama, Tomoo; Azzam, E.*; Murakami, Takeshi*; Suzuki, Masao*

International Journal of Radiation Biology, 91(1), p.62 - 70, 2015/01

 Times Cited Count:31 Percentile:93.49(Biology)

Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells. Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) by which 0.036$$sim$$0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation. The results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET.

229 (Records 1-20 displayed on this page)