Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 264

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Laser-driven neutron generation realizing single-shot resonance spectroscopy

Yogo, Akifumi*; Lan, Z.*; Arikawa, Yasunobu*; Abe, Yuki*; Mirfayzi, S. R.*; Wei, T.*; Mori, Takato*; Golovin, D.*; Hayakawa, Takehito*; Iwata, Natsumi*; et al.

Physical Review X, 13(1), p.011011_1 - 011011_12, 2023/01

 Times Cited Count:1 Percentile:90.46(Physics, Multidisciplinary)

Journal Articles

Designs and neutronic characteristics of an epithermal neutron moderator at ambient temperature for neutron time-of-flight measurements

Lee, J.; Ito, Fumiaki*; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Koizumi, Mitsuo

Journal of Nuclear Science and Technology, 59(12), p.1546 - 1557, 2022/12

 Times Cited Count:3 Percentile:86.35(Nuclear Science & Technology)

Journal Articles

Response characteristics of a lithium glass scintillator for gamma-ray and neutron

Lee, J.; Ito, Fumiaki*; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Koizumi, Mitsuo; Hori, Junichi*; Terada, Kazushi*

Dai-43-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2022/11

no abstracts in English

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:3 Percentile:80.29(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Development of a neutron scintillator for a compact NRTA system, 2

Lee, J.; Hironaka, Kota; Ito, Fumiaki*; Takahashi, Tone; Koizumi, Mitsuo; Hori, Junichi*; Terada, Kazushi*

KURNS Progress Report 2021, P. 97, 2022/07

no abstracts in English

Journal Articles

Variation of internal doses caused by differences in physical characteristics between the average Japanese and the ICRP's reference man which is based on the standard data of Caucasians in the dosimetric methodology in conformity to the 2007 Recommendations

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

Journal of Nuclear Science and Technology, 59(5), p.656 - 664, 2022/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

It is known that internal doses depend on the physical characteristics of an evaluation subject. Internal dose coefficients provided by the International Commission on Radiological Protection (ICRP) are evaluated using the characteristics of the standard Caucasian. It is important to grasp the variations of doses due to the differences in characteristics between Japanese and Caucasian when the dose coefficients of ICRP are applied to Japanese. This study evaluated dose coefficients using specific absorbed fraction (SAF) data based on the average adult Japanese physique which was developed by modification of the existing Japanese SAF data with additional calculations to make the existing data fit to the current dosimetric methodology of ICRP and compared them to those provided by ICRP. As a result, the discrepancies in dose coefficients were smaller than plus or minus 10% in most intake conditions. However, some intake conditions indicated varieties over 40% due to the differences in organ masses, amount of adipose tissues around the thoracic cavity, and so on. This information is useful in application of ICRP's dose coefficients to population of which physical characteristics are different from those of Caucasian. Further, the Japanese SAF data is published as an appendix of this paper.

Journal Articles

Demonstration of a neutron resonance transmission analysis system using a laser-driven neutron source

Hironaka, Kota; Ito, Fumiaki*; Lee, J.; Koizumi, Mitsuo; Takahashi, Tone; Suzuki, Satoshi*; Yogo, Akifumi*; Arikawa, Yasunobu*; Abe, Yuki*

Dai-42-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2021/11

Neutron resonance transmission analysis (NRTA) is a method for non-destructive measurement of nuclear material by using a time-of-flight (TOF) technique with a pulsed neutron source. For NRTA system to carry out the short-distance TOF measurements with high resolutions, a short-pulsed neutron source is required. Laser-driven neutron sources (LDNSs) is very suitable as such a neutron source because of its short pulse width. Moreover, the compactness of the laser system is also expected due to the remarkable development of laser technology in recent years. In the present study, we have developed a technology for applying LDNS to the NRTA system and conducted the demonstration experiment using the LFEX laser at Osaka University to investigate the feasibility of the system. In this experiment, we successfully observed the neutron resonance peaks of indium and silver samples.

Journal Articles

Development of a neutron sintillator for a compact NRTA system

Ito, Fumiaki*; Lee, J.; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Hori, Junichi*; Terada, Kazushi*; Koizumi, Mitsuo

KURNS Progress Report 2020, P. 98, 2021/08

A compact Nuclear Resonance Transmission Analysis (NRTA) system using a Laser Driven Neutron Source (LDNS) has been developed as a part of the development of nuclear non-proliferation technology supported by the MEXT. In NRTA, the neutron energy emitted from a pulsed neutron source is measured using the time-of-flight (TOF) method. LDNS is of interest because of its short pulse width, which is necessary for accurate TOF measurements over short flight distances. In the short-distance TOF measurement, there will be a large gamma-ray background event due to the coincidence of the timing of the arrival of 2.2 MeV gamma-rays due to neutron capture on hydrogen in the moderator and the timing of the arrival of neutrons around the resonance energy. Since the LDNS is still under development, the neutron flux is not sufficient and it is desirable to use a detector with high detection efficiency. For these reasons, we have developed a detector with low efficiency to gamma-rays and high efficiency to neutrons (multilayer neutron detector). As one of the results of this year's experiments, we confirmed that the multilayer neutron detector have low sensitivity to gamma-rays.

JAEA Reports

Effective dose coefficients for internal exposure dose assessment in accordance with ICRP 2007 recommendations (Contract research)

Takahashi, Fumiaki; Manabe, Kentaro; Sato, Kaoru

JAEA-Review 2020-068, 114 Pages, 2021/03

JAEA-Review-2020-068.pdf:2.61MB

Radiation safety regulations have been currently established based on the 1990Recommendation by the International Commission on Radiological Protection (ICRP) in Japan. Meanwhile, ICRP released the 2007 Recommendation that replaces the 1990 Recommendation. Thus, the Radiation Council, which is established under the Nuclear Regulation Authority (NRA), has made discussions to incorporate the purpose of the 2007 Recommendation into Japanese regulations for radiation safety. As ICRP also has published effective dose coefficients for internal exposure assessment in accordance with the 2007recommendation, the technical standards are to be revised for the internal exposure assessment method in Japan. Currently, not all of the effective doses have been published to revise concentration limits for internal exposure protections of workers and public. The published effective dose coefficients are applied to radionuclides which are important in radiation protection for internal exposure of a worker. Thus, we review new effective dose coefficients as well as basic dosimetry models and data based upon Occupational Intakes of Radionuclides (OIR) parts 2, 3 and 4 that have been published from 2016 to 2019 by ICRP. In addition, issues are sorted out to provide information for revision of the technical standards for internal exposure assessment based on the 2007 Recommendations in future.

Journal Articles

Japanese population dose from natural radiation

Omori, Yasutaka*; Hosoda, Masahiro*; Takahashi, Fumiaki; Sanada, Tetsuya*; Hirao, Shigekazu*; Ono, Koji*; Furukawa, Masahide*

Journal of Radiological Protection, 40(3), p.R99 - R140, 2020/09

 Times Cited Count:18 Percentile:78.08(Environmental Sciences)

UNSCEAR and the Nuclear Safety Research Association report the annual effective doses from cosmic rays, terrestrial radiation, inhalation and ingestion from natural sources. In this study, radiation doses from natural radiation sources in Japan were reviewed with the latest knowledge and data. Total annual effective dose from cosmic-ray exposure can be evaluated as 0.29 mSv. The annual effective dose from external exposure to terrestrial radiation for Japanese population can be evaluated as 0.33 mSv using the data of nationwide survey by the National Institute of Radiological Sciences. The Japan Chemical Analysis Center (JCAC) performed the nationwide radon survey using a unified method for radon measurements in indoor, outdoor and workplace. The annual effective dose for radon inhalation was estimated using a current dose conversion factor, and the values were estimated to be 0.50 mSv. The annual effective dose from thoron was reported as 0.09 mSv by UNSCEAR and then the annual effective dose from inhalation can be described as 0.59 mSv. According to the report of large scale survey of foodstuff by JCAC, the effective dose from main radionuclides due to dietary intake can be evaluated to be 0.99 mSv. Finally, Japanese population dose from natural radiation can be assessed as 2.2 mSv which is near to the world average value of 2.4 mSv.

Journal Articles

Development of a function calculating internal dose coefficients based on ICRP 2007 Recommendations

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

BIO Web of Conferences (Internet), 14, p.03011_1 - 03011_2, 2019/05

 Times Cited Count:0 Percentile:0.21

Dose coefficients, which are committed effective dose per unit intake of radionuclides, are fundamental amounts for dose estimation and protection standards against internal exposures. In this study, we built a calculation function of dose coefficients using the latest dosimetric models and data as a part of development of internal dosimetry code in accordance with 2007 Recommendations of the International Commission of Radiological Protection (ICRP). Quality of the function was assured by comparing the results generated by the function to values recorded in a database of dose coefficients for workers provided by ICRP. In the presentation, we will report the results of quality assurance and the future plans of code development.

Journal Articles

Estimating internal dose coefficients of short-lived radionuclides in accordance with ICRP 2007 Recommendations

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

Journal of Nuclear Science and Technology, 56(5), p.385 - 393, 2019/05

 Times Cited Count:3 Percentile:32.21(Nuclear Science & Technology)

At high energy accelerator facilities, various radionuclides are produced by nuclear reactions of high energy particles with structure and/or ambient air of the facilities. Consequently, the radionuclides are potential sources of internal exposure for works of the facilities. However, the International Commission on Radiological Protection (ICRP) do not provide dose coefficients, which are committed effective doses per intake, for the short-lived radionuclides whose half-lives are shorter than 10 minutes in accordance with the ICRP 2007 Recommendations. Then, we estimated the dose coefficients for inhalation and ingestion of these short-lived radionuclides in accordance with the ICRP 2007 Recommendations. In addition, we compared the dose coefficients with those in accordance with the ICRP 1990 Recommendations. As a result, a decreasing tendency was shown in the dose coefficients for inhalation cases; an increasing tendency was observed in those for ingestion cases. It was found that these changes in dose coefficients were mainly caused by the revision of the dose calculation procedures, alimentary tract models. The result of this study will be useful for planning of radiation protection at the high energy facilities.

Journal Articles

Units of radiation (radioactivity)

Takahashi, Fumiaki

Genshiryoku No Ima To Ashita, p.109 - 111, 2019/03

The Atomic Energy Society of Japan has planned to publish a document for public, entitled "Current and tomorrow of atomic energy, -Experiences from the accident at the Tokyo Electronic Power Company Fukushima Dai-ichi NPPs-". The documents give us basics and usages of radiations, in addition to nuclear power plants and the accident at TEPCO Fukushima Dai-ichi NPPs. This manuscript explains physical quantities (e.g., absorbed dose), protection quantities and operational quantities that are used for radiation measurement and protection. The unit of radioactivity is also explained, because radioactivity is measured for work places in a radiation facility for internal exposure protection. In addition, radiation dose constants that relate radiation dose to the activity are also introduced, as useful radiation units for radiation protection.

Journal Articles

5.1.2 Properties and characteristics of radiations

Takahashi, Fumiaki

Genshiryoku No Ima To Ashita, p.106 - 109, 2019/03

The Atomic Energy Society of Japan has planned to publish a document for public, entitled "Current and tomorrow of atomic energy, -Experiences from the accident at the Tokyo Electronic Power Company Fukushima Dai-ichi NPPs-". The documents give us basics and usages of radiations, in addition to nuclear power plants and the accident at TEPCO Fukushima Dai-ichi NPPs. This manuscript explains interactions and penetrations in material for $$alpha$$-rays, $$beta$$-rays, $$gamma$$-rays and neutrons. In addition, exposure characteristics that is determined by properties of radiations are expressed here. This manuscript also explains characteristics in internal exposure and countermeasures of radiation protection following the TEPCO accident for Iodine-131 and Cesium-137.

Journal Articles

Dataset of TLD badge response and hair activation for criticality accident neutron dosimetry

Tsujimura, Norio; Takahashi, Fumiaki; Takada, Chie

Progress in Nuclear Science and Technology (Internet), 6, p.148 - 151, 2019/01

Journal Articles

Construction of adult Japanese voxel phantoms with various body sizes and their applications to evaluation of organ doses due to external photon irradiation

Sato, Kaoru; Takahashi, Fumiaki

Hoken Butsuri, 52(4), p.247 - 258, 2017/12

Organ doses for dose assessment in radiation protection are derived from ICRP reference phantoms (Male:RCP-AM, Female:RCP-AF) with standard Caucasian physiques. In adult, Japanese are smaller than Caucasian. To study impact of differences in physiques between Caucasian and Japanese on organ doses, we previously constructed Japanese phantoms (Male:JM-103, Female:JF-103) with average adult Japanese physiques. In addition, adult Japanese physiques have also wide distribution. Thus, we newly modeled DJM (Male) and DJF (Female) with 8 physiques by changing the perimeters of JM-103 and JF-103. Organ doses due to external photon irradiation of DJM and DJF were calculated, and were compared with those of RCP-AM and RCP-AF. In ISO geometry at 0.3 MeV, it was found that doses of breast, colon, lung, stomach, gonad, urinary bladder, esophagus, liver and thyroid in DJM and DJF with physiques, which are applicable to most adult Japanese, agreed with those of RCP-AM and RCP-AF within 10%.

Journal Articles

Simulation study of personal dose equivalent for external exposure to radioactive cesium distributed in soil

Satoh, Daiki; Furuta, Takuya; Takahashi, Fumiaki; Lee, C.*; Bolch, W. E.*

Journal of Nuclear Science and Technology, 54(9), p.1018 - 1027, 2017/09

 Times Cited Count:5 Percentile:57.31(Nuclear Science & Technology)

The personal dose equivalent was calculated for the public (newborns; 1-, 5-, 10-, and 15-year-old children; and adults) in an environment contaminated with radioactive cesium ($$^{134}$$Cs and $$^{137}$$Cs) distributed in a soil at specific depths of 0.0, 0.5, 2.5, 5.0, 10.0, and 50.0 g/cm$$^2$$. Monte Carlo calculations were performed using pediatric and adult computational phantoms incorporated into a particle and heavy ion transport code system (PHITS). Compared with the effective dose and ambient dose equivalent at a height of 100 cm above the ground, the personal dose equivalent was found to provide an acceptable assessment for the effective dose and did not exceed the ambient dose equivalent in the environmental radiation field, while the personal dose equivalent values increased for younger subjects. The weighted-integral method to obtain the personal dose equivalent for a volumetric source was applied to the analysis of exponential radioactive cesium distributions in the soil observed in Fukushima, and the calculation results successfully reproduced the measured data.

Journal Articles

Generation method of underwater landmarks for ocean observation

Takahashi, Satoru*; Nota, Yoshiki*; Matsuda, Asahi*; Kawabata, Kuniaki; Suzuki, Tsuyoshi*; Takemura, Fumiaki*; Ogasawara, Kei*; Kaneko, Shunichi*

Journal of Signal Processing, 21(1), p.15 - 24, 2017/01

In recent years, many researchers try to observe the state of the global environment from marine information for the understanding of the global environment change. First, we introduce the recording system of underwater environment which is made by the authors. By using this system, we want to observe the change of global environment from the coral bleaching. In this paper, especially, we propose the generation method of underwater landmark which is used to measure the position of robot of oceanographic observation based on the dynamic image processing. In here, underwater landmark means the feature point in underwater image.

JAEA Reports

Assessment of specific absorbed fractions for photons and electrons using average adult Japanese female phantom

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

JAEA-Data/Code 2016-013, 48 Pages, 2016/12

JAEA-Data-Code-2016-013.pdf:1.3MB
JAEA-Data-Code-2016-013-appendix(CD-ROM).zip:0.47MB

In the 2007 Recommendations of the International Commission on Radiological Protection (ICRP), an effective dose is defined as a sum of equivalent doses which are calculated by using male and female reference phantoms based on Caucasian physiological data and averaged over the sexes by tissue weighting factors. Specific absorbed fractions (SAFs), which are essential for internal dosimetry, depend on the body weight and organ masses of phantoms. Then, the dose coefficients, which are committed effective doses per unit intake of radionuclides, developed by ICRP on the basis of the 2007 Recommendations reflect the physical characteristics of Caucasians and are averaged over the sexes. Meanwhile, the physiques of adult Japanese are generally smaller than those of adult Caucasians, and organ masses are also different from each other. Knowledge of the influence of race differences on dose coefficients is important to apply the sex averaged dose coefficients of ICRP to the Japanese system of radiation protection. In this study, SAFs for 25 kinds of mono-energetic electrons and photons ranging from 10 keV to 10 MeV were calculated about the combinations of 67 source regions and 42 target organs using the average adult Japanese female phantom, JF-103, incorporated with a general purpose radiation transport code, MCNPX 2.6.0. The data of this report and the previously published data of JM-103 are applicable to evaluate sex-specific and sex-averaged dose coefficients reflecting the physical characteristics of the average adult Japanese for intakes of all radionuclides not to emit other than photons and electrons.

Journal Articles

Age-dependent dose conversion coefficients for external exposure to radioactive cesium in soil

Satoh, Daiki; Furuta, Takuya; Takahashi, Fumiaki; Endo, Akira; Lee, C.*; Bolch, W. E.*

Journal of Nuclear Science and Technology, 53(1), p.69 - 81, 2016/01

 Times Cited Count:16 Percentile:85.95(Nuclear Science & Technology)

To estimate effective doses for the public exposed to external radiation from radioactive cesium ($$^{134}$$Cs and $$^{137}$$Cs) deposited on the ground by the Fukushima nuclear accident, we calculate the conversion coefficients for converting activity concentration to effective dose rate by using the Particle and Heavy Ion Transport code System (PHITS). The data were produced from different age groups within the public (newborns; 1-, 5-, 10-, and 15-year-old children; and adults) for the situations in which radioactive cesium is distributed uniformly in the soil over a planar area and at specific depths of 0.0, 0.5, 2.5, 5.0, 10.0, and 50.0 g/cm$$^{2}$$. On the basis of the results, we also derive the conversion coefficients for exponentially distributed volumetric sources. In addition, we obtain the conversion coefficients that give the effective dose accumulated over the first and second months, the first year, and over a lifetime (50 years) because of the contamination remaining on the ground. These calculations indicate that the conversion coefficients to obtain the effective dose rate are higher for the younger ages compared with adults but do not exceed the ambient dose equivalent rate. Furthermore, we find that the difference between the calculated effective dose rates according to the International Commission on Radiological Protection (ICRP) 1990 and 2007 Recommendations is small (7% maximum) for a ground contamination of radioactive cesium.

264 (Records 1-20 displayed on this page)