Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Production of $$^{266}$$Bh in the $$^{248}$$Cm($$^{23}$$Na,5$$n$$)$$^{266}$$Bh reaction and its decay properties

Haba, Hiromitsu*; Fan, F.*; Kaji, Daiya*; Kasamatsu, Yoshitaka*; Kikunaga, Hidetoshi*; Komori, Yukiko*; Kondo, Narumi*; Kudo, Hisaaki*; Morimoto, Koji*; Morita, Kosuke*; et al.

Physical Review C, 102(2), p.024625_1 - 024625_12, 2020/08

 Times Cited Count:6 Percentile:59.56(Physics, Nuclear)

Journal Articles

Complex chemistry with complex compounds

Eichler, R.*; Asai, Masato; Brand, H.*; Chiera, N. M.*; Di Nitto, A.*; Dressler, R.*; D$"u$llmann, Ch. E.*; Even, J.*; Fangli, F.*; Goetz, M.*; et al.

EPJ Web of Conferences, 131, p.07005_1 - 07005_7, 2016/12

 Times Cited Count:3 Percentile:72.98(Chemistry, Inorganic & Nuclear)

In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the productions and investigations of fragile single molecular species of superheavy elements. The latest highlight is the formation of very volatile hexacarbonyl compound of element 106, Sg(CO)$$_{6}$$. Following this success, second-generation experiments were performed to measure the first bond dissociation energy between the central metal atom and the surrounding ligand. The method using a tubular decomposition reactor was developed and successfully applied to short-lived Mo(CO)$$_{6}$$, W(CO)$$_{6}$$, and Sg(CO)$$_{6}$$.

Journal Articles

Density and X-ray emission profile relationships in highly ionized high-Z laser-produced plasmas

Yoshida, Kensuke*; Fujioka, Shinsuke*; Higashiguchi, Takeshi*; Ugomori, Teruyuki*; Tanaka, Nozomi*; Kawasaki, Masato*; Suzuki, Yuhei*; Suzuki, Chihiro*; Tomita, Kentaro*; Hirose, Ryoichi*; et al.

Applied Physics Letters, 106(12), p.121109_1 - 121109_5, 2015/03

 Times Cited Count:10 Percentile:38.07(Physics, Applied)

Journal Articles

Efficient extreme ultraviolet emission from one-dimensional spherical plasmas produced by multiple lasers

Yoshida, Kensuke*; Fujioka, Shinsuke*; Higashiguchi, Takeshi*; Ugomori, Teruyuki*; Tanaka, Nozomi*; Ohashi, Hayato*; Kawasaki, Masato*; Suzuki, Yuhei*; Suzuki, Chihiro*; Tomita, Kentaro*; et al.

Applied Physics Express, 7(8), p.086202_1 - 086202_4, 2014/08

 Times Cited Count:29 Percentile:73.72(Physics, Applied)

We demonstrate high conversion efficiency for extreme ultraviolet (EUV) emission at 6.5-6.7 nm from multiple laser beam-produced one-dimensional spherical plasmas. Multiply charged-state ions produce strong resonance emission lines, which combine to yield intense unresolved transition arrays in Gd, Tb, and Mo. The maximum in-band EUV conversion efficiency was observed to be 0.8%, which is one of the highest values ever reported due to the reduction of plasma expansion loss.

Journal Articles

New result in the production and decay of an isotope, $$^{278}$$113 of the 113th element

Morita, Kosuke*; Morimoto, Koji*; Kaji, Daiya*; Haba, Hiromitsu*; Ozeki, Kazutaka*; Kudo, Yuki*; Sumita, Takayuki*; Wakabayashi, Yasuo*; Yoneda, Akira*; Tanaka, Kengo*; et al.

Journal of the Physical Society of Japan, 81(10), p.103201_1 - 103201_4, 2012/10

 Times Cited Count:167 Percentile:97.27(Physics, Multidisciplinary)

An isotope of the 113th element, $$^{278}$$113, was produced in a nuclear reaction with a $$^{70}$$Zn beam on a $$^{209}$$Bi target. We observed six consecutive $$alpha$$ decays following the implantation of a heavy particle in nearly the same position in the semiconductor detector, in extremely low background condition. The fifth and sixth decays are fully consistent with the sequential decays of $$^{262}$$Db and $$^{258}$$Lr both in decay energies and decay times. This indicates that the present decay chain consisted of $$^{278}$$113, $$^{274}$$Rg (Z = 111), $$^{270}$$Mt (Z = 109), $$^{266}$$Bh (Z = 107), $$^{262}$$Db (Z = 105), and $$^{258}$$Lr (Z = 103) with firm connections. This result, together with previously reported results from 2004 and 2007, conclusively leads the unambiguous production and identification of the isotope $$^{278}$$113, of the 113th element.

5 (Records 1-5 displayed on this page)
  • 1