Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Overview of toroidal momentum transport

Peeters, A. G.*; Angioni, C.*; Bortolon, A.*; Camenen, Y.*; Casson, F. J.*; Duval, B.*; Fiederspiel, L.*; Hornsby, W. A.*; Idomura, Yasuhiro; Hein, T.*; et al.

Nuclear Fusion, 51(9), p.094027_1 - 094027_13, 2011/09

 Times Cited Count:99 Percentile:97.21(Physics, Fluids & Plasmas)

Journal Articles

Current ramps in tokamaks; From present experiments to ITER scenarios

Imbeaux, F.*; Citrin, J.*; Hobirk, J.*; Hogeweij, G. M. D.*; K$"o$chl, F.*; Leonov, V. M.*; Miyamoto, Seiji; Nakamura, Yukiharu*; Parail, V.*; Pereverzev, G. V.*; et al.

Nuclear Fusion, 51(8), p.083026_1 - 083026_11, 2011/08

 Times Cited Count:35 Percentile:80.68(Physics, Fluids & Plasmas)

Journal Articles

Overview of anomalous toroidal momentum transport

Peeters, A. G.*; Angioni, C.*; Bortolon, A.*; Camenen, Y.*; Casson, F. J.*; Dubal, B.*; Fiederspiel, L.*; Hornsby, W. A.*; Idomura, Yasuhiro; Kluy, N.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 13 Pages, 2011/03

Journal Articles

Current ramps in tokamaks; From present experiments to ITER scenarios

Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Journal Articles

Current ramps in tokamaks; From present experiments to ITER scenarios

Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

In order to prepare adequate current ramp-up and ramp-down scenarios for ITER, present experiments from several tokamaks have been analyzed by means of integrated modeling in view of determining relevant heat transport models for these operation phases. The results of these studies are presented and projections to ITER current ramp-up and ramp-down scenarios are done, focusing on the baseline inductive scenario (main heating plateau current of 15 MA). Various transport models have been tested by means of integrated modeling against experimental data from ASDEX Upgrade, C-Mod, DIII-D, JET and Tore Supra, including both Ohmic plasmas and discharges with additional heating/current drive. With using the most successful models, projections to the ITER current ramp-up and ramp-down phases are carried out. Though significant differences between models appear on the electron temperature prediction, the final q-profiles reached in the simulation are rather close.

Journal Articles

Experimental studies of ITER demonstration discharges

Sips, A. C. C.*; Casper, T. A.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.

Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10

The ITER discharge evolution has been verified in dedicated experiments. Results show that breakdown at E$$<$$ 0.23-0.32 V/m is possible un-assisted (ohmic) for large devices like JET and attainable in all devices with ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. Operation of the H-mode reference scenario at q$$_{95}$$ = 3 and the hybrid scenario at q95=4-4.5 during the flat top phase was documented. Specific studies during the flat top phase provide data for the li evolution after the H-mode transition and the li evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation.

6 (Records 1-6 displayed on this page)
  • 1