Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 26

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2022

Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Koike, Yuko; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; Nagai, Shinji; et al.

JAEA-Review 2023-046, 164 Pages, 2024/03

JAEA-Review-2023-046.pdf:4.2MB

The Nuclear Fuel Cycle Engineering Laboratories conducts environmental radiation monitoring around the reprocessing plant in accordance with the "Safety Regulations for Reprocessing Plant of JAEA, Part IV: Environmental Monitoring". This report summarizes the results of environmental radiation monitoring conducted during the period from April 2022 to March 2023 and the results of dose calculations for the surrounding public due to the release of radioactive materials into the atmosphere and ocean. In the results of the above environmental radiation monitoring, many items were affected by radioactive materials emitted from the accident at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, Incorporated (changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016), which occurred in March 2011. Also included as appendices are an overview of the environmental monitoring plan, an overview of measurement methods, measurement results and their changes over time, meteorological statistics results, radioactive waste release status, and an evaluation of the data which deviated of the normal range.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2021

Nakada, Akira; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Futagawa, Kazuo; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; et al.

JAEA-Review 2022-078, 164 Pages, 2023/03

JAEA-Review-2022-078.pdf:2.64MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2021 to March 2022. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2020

Nakada, Akira; Nakano, Masanao; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Nemoto, Masashi; Tobita, Keiji; Futagawa, Kazuo; Yamada, Ryohei; Uchiyama, Rei; et al.

JAEA-Review 2021-062, 163 Pages, 2022/02

JAEA-Review-2021-062.pdf:2.87MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2020 to March 2021. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2019

Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Seya, Natsumi; Nishimura, Shusaku; Hosomi, Kenji; Nagaoka, Mika; Yokoyama, Hiroya; Matsubara, Natsumi; et al.

JAEA-Review 2020-069, 163 Pages, 2021/02

JAEA-Review-2020-069.pdf:4.78MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2019 to March 2020. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2018

Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Maehara, Yushi; Narita, Ryosuke; et al.

JAEA-Review 2019-048, 165 Pages, 2020/03

JAEA-Review-2019-048.pdf:2.69MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2018 to March 2019. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2017

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Hokama, Tomonori; Nishimura, Tomohiro; Matsubara, Natsumi; et al.

JAEA-Review 2018-025, 171 Pages, 2019/02

JAEA-Review-2018-025.pdf:3.81MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2016

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Nishimura, Tomohiro; Koike, Yuko; et al.

JAEA-Review 2017-028, 177 Pages, 2018/01

JAEA-Review-2017-028.pdf:3.61MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2015

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; Matsubara, Natsumi; Maehara, Yushi; et al.

JAEA-Review 2016-035, 179 Pages, 2017/03

JAEA-Review-2016-035.pdf:4.2MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2015 to March 2016. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2014

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju*; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; et al.

JAEA-Review 2015-034, 175 Pages, 2016/03

JAEA-Review-2015-034.pdf:8.13MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2014 to March 2015. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co. in March 2011.

Journal Articles

Ripple loss of alpha particles in a low-aspect ratio tokamak reactor

Tani, Keiji*; Nishio, Satoshi; Tobita, Kenji; Tsutsui, Hiroaki*; Mimata, Hideyuki*; Iio, Shunji*; Aoki, Takayuki*

Denki Gakkai Rombunshi, A, 129(9), p.569 - 574, 2009/09

Studies on the loss of fusion produced alpha particles enhanced by toroidal field (TF) ripple in a low-aspect-ratio tokamak reactor (VECTOR) have been made by using an orbit-following Monte-Carlo code. In actual TF coil systems, the ripple loss of alpha particles is strongly reduced as the aspect ratio becomes low (the power loss is proportional to A$$^{8.8}$$ for A more than 2.5) and the reduction of the number of TF coils results in a large amount of ripple losses even in a low-aspect-ratio tokamak.

Journal Articles

Numerical study of the ripple resonance diffusion of alpha particles in tokamaks

Mimata, Hideyuki*; Tani, Keiji*; Tsutsui, Hiroaki*; Tobita, Kenji; Iio, Shunji*; Shimada, Ryuichi*

Plasma and Fusion Research (Internet), 4, p.008_1 - 008_8, 2009/04

The energy dependence of the diffusion coefficients of alpha particles in rippled magnetic fields of tokamaks are numerically investigated with an orbit following Monte Carlo code. The diffusion coefficients are enhanced around the ripple resonance energy while they are reduced and has a minimum near the resonance energy, and hence they have an M-shaped dependence on the energy. The ripple resonance is caused by a radial change of the toroidal precession of banana particles, and creates islands in the phase space related with the toroidal and poloidal angles. Since the particles outside the separatrix mainly contribute to the diffusion, the M-shaped energy dependence is explained by both island structure and initial distribution of particles in the phase space. Such a ripple resonant diffusion is dominant for fusion-produced alpha particles in the slowing down process.

Journal Articles

Confinement of alpha particles in a low-aspect-ratio tokamak reactor

Tani, Keiji; Tobita, Kenji; Iio, Shunji*; Tsutsui, Hiroaki*; Nishio, Satoshi; Aoki, Takayuki*

Denki Gakkai Rombunshi, A, 125(11), p.938 - 942, 2005/11

Studies on the loss of fusion produced alpha particles enhanced by toroidal field (TF) ripple in a low-aspect-ratio tokamak reactor (VECTOR) have been made by using an orbit-following Monte-Carlo code. The ripple loss is strongly reduced as the aspect ratio becomes low. Consequently, alpha particles are well confined in VECTOR. Thanks to the good confinement of alphas in a low-aspect-ratio system, the number of TF coils can be reduced to about 6, one half of the original VECTOR, by installing cooling systems near the outer edge of plasma and making allowances for about 30% increase in the bore diameter of TF coils.

JAEA Reports

Scattering Profiles of Sparks and Combustibility of Filter against Hot Sparks

Tobita, Noriyuki; Okada, Takashi; Kashiro, Kashio; Matsumoto, Masaki; Watahiki, Masatoshi; Nakata, Keiji*; Gonnokami, Kiyomi*

JNC TN8430 2004-001, 125 Pages, 2004/12

JNC-TN8430-2004-001.pdf:143.53MB

An event that a pre-filter burned on fire took place in the glove box dismantlement facility of Plutonium Production Facility, on April 21, 2003. The direct cause of this event was considered to be sparks generated by an abrasive wheel cutter, some of which reached the pre-filter and eventually burned the pre-filter. Further investigation revealed that there exist other deficiencies those of which formed indirect causes of the event, such as the wheel cutter was used without protective cover and adequate shield against sparks was not installed during the operation. To prevent similar event in the future, following corrective actions were introduced. Wheel cutter will not be used without protective cover; Incombustible pre-filter will be used; Shield will be place at the front of the pre-filter. We have conducted series of experimental tests in order to evaluate and confirm the validity of these corrective actions as well as determine the cause of the fire. This report present the results of these tests.

Journal Articles

Confinement of alpha particles in a low aspect ratio tokamak reactor

Tani, Keiji; Tobita, Kenji; Nishio, Satoshi; Iio, Shunji*; Tsutsui, Hiroaki*; Aoki, Takayuki*

Purazuma, Kaku Yugo Gakkai-Shi, 80(11), p.931 - 934, 2004/11

Studies were made on ripple losses of fusion produced alpha particles in a low-aspect-ratio tokamak reactor (VECTOR) by using an orbit-following Monte-Carlo code. Alpha particles are well confined in VECTOR. In a low-aspect-ratio tokamak, the dependence of ripple losses on the number of toroidal-field (TF) coils N is very weak. Assuming a toroidal peaking factor of 2 for the heat load due to loss particles, about 1.5% and 1.0% of TF ripple at the outer edge of plasma might be allowable for the first wall with and without cooling system, respectively. In both cases, the number of TF-coils can be reduced to about 4.

Journal Articles

On the confinement of alpha particles in a low-aspect-ratio tokamak reactor

Tani, Keiji; Tobita, Kenji; Nishio, Satoshi; Iio, Shunji*; Tsutsui, Hiroaki*; Aoki, Takayuki*

Denki Gakkai Purazuma Kenkyukai Shiryo (PST-03-39), p.13 - 18, 2003/09

Studies were made on ripple losses of fusion produced alpha particles in a tokamak reactor with a non-circular plasma cross-section by using an orbit-following Monte-Carlo code. A preliminary estimation of ripple loss of alpha particles in VECTOR, a compact tokamak type fusion reactor, with a negative magnetic shear was also made

Journal Articles

Energetic particle experiments in JT-60U and their implications for a fusion reactor

Tobita, Kenji; Kusama, Yoshinori; Shinohara, Koji; Nishitani, Takeo; Kimura, Haruyuki; Kramer, G. J.*; Nemoto, Masahiro*; Kondoh, Takashi; Oikawa, Toshihiro; Morioka, Atsuhiko; et al.

Fusion Science and Technology (JT-60 Special Issue), 42(2-3), p.315 - 326, 2002/09

 Times Cited Count:8 Percentile:47.9(Nuclear Science & Technology)

Energetic particle experiments in JT-60U are summarized, mainly covering ripple loss and Alfven eigenmodes (AE modes). Significant loss was observed for 85 keV NBI ions and fusion-produced tritons increased when toroidal field ripple at the plasma surface, especially in reversed shear plasma. Measurement of hot spots on the first wall due to ripple loss confirmed agreement with code predictions, validating the modeling incorporated in an orbit-following Monte Carlo code. A variety of AE modes were destabilized in ICRF minority heating and negative-ion-based NBI (N-NBI) heating. Most of the observed modes are gap modes identified to be TAE, EAE and NAE. Interesting finding is pulsating modes accompanying frequency sweep, which were destabilized by N-NBI and sometimes induced a beam ion loss of up to 25%. Also presented are energetic particle issues in auxiliary heating with ICRF and N-NBI.

Journal Articles

Transport and loss of energetic ions in JT-60U

Tobita, Kenji; Nishitani, Takeo; Harano, Hideki*; Tani, Keiji; Isobe, Mitsutaka*; Fujita, Takaaki; Kusama, Yoshinori; G.A.Wurden*; Shirai, Hiroshi; Oikawa, Toshihiro; et al.

Fusion Energy 1996, Vol.1, p.497 - 505, 1997/00

no abstracts in English

Journal Articles

Loss of fast tritons in JT-60U reversed magnetic shear discharges

Tobita, Kenji; Harano, Hideki*; Nishitani, Takeo; Fujita, Takaaki; Tani, Keiji; Oikawa, Toshihiro; Shirai, Hiroshi; Kusama, Yoshinori

Nuclear Fusion, 37(11), p.1583 - 1592, 1997/00

 Times Cited Count:26 Percentile:64.72(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Ripple losses of fast particles from reversed magnetic shear plasmas

Tobita, Kenji; Hamamatsu, Kiyotaka; Harano, Hideki*; Nishitani, Takeo; Tani, Keiji; Kusama, Yoshinori; Takizuka, Tomonori; S.Putvinski*

Proc. of 24th European Physical Society Conf. on Controlled Fusion and Plasma Physics, 21A, p.717 - 720, 1997/00

no abstracts in English

Journal Articles

Ripple induced fast ion loss and related effects in JT-60U

Tobita, Kenji; Tani, Keiji; Kusama, Yoshinori; Nishitani, Takeo; Ikeda, Yoshitaka; Neyatani, Yuzuru; S.V.Konovalov*; Kikuchi, Mitsuru; Koide, Yoshihiko; Hamamatsu, Kiyotaka; et al.

Nuclear Fusion, 35(12), p.1585 - 1591, 1995/00

 Times Cited Count:68 Percentile:88.29(Physics, Fluids & Plasmas)

no abstracts in English

26 (Records 1-20 displayed on this page)