Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-2, JRR-3 and Hot laboratory

Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; Konda, Miki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2023-002, 81 Pages, 2023/05

JAEA-Data-Code-2023-002.pdf:3.0MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 20 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2020.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JPDR, JRR-3 and JRR-4 Facilities

Tsuchida, Daiki; Mitsukai, Akina; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2022-004, 87 Pages, 2022/07

JAEA-Data-Code-2022-004.pdf:6.73MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until by the beginning of disposal. In order to contribute to this work, we collected and analyzed samples generated from JPDR, JRR-3 and JRR-4. In this report, radioactivity concentrations of 20 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{99}$$Tc, $$^{rm 108m}$$Ag, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{244}$$Cm) were determined based on radiochemical analysis and summarized as basic data for the study of evaluation method of radioactive concentration.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-3 and JPDR facilities

Tsuchida, Daiki; Haraga, Tomoko; Tobita, Minoru*; Omori, Hiroyuki*; Omori, Takeshi*; Murakami, Hideaki*; Mitsukai, Akina; Aono, Ryuji; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2020-022, 34 Pages, 2021/03

JAEA-Data-Code-2020-022.pdf:1.74MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JRR-3 and JPDR. In this report, we summarized the radioactivity concentrations of 22 radionuclides($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{133}$$Ba, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples.

Journal Articles

Numerical simulation of hydrogen thermal desorption profile under assumption of two kinds of trap sites for tempered martensitic steel

Tsuchida, Yutaka*; Ebihara, Kenichi

Tetsu To Hagane, 103(11), p.653 - 659, 2017/11

 Times Cited Count:2 Percentile:11.49(Metallurgy & Metallurgical Engineering)

A single peak in thermal desorption profiles of hydrogen, which are measured in low-temperature thermal desorption spectrometry (L-TDS) for a very thin plate specimen of tempered martensitic steel, was reproduced successfully by the superposition of two Gaussian distributions. Then, the parameters concerning the detrapping rate constants for both peaks, which are trap energy and pre-exponential factor, were calculated using the Choo-Lee plot. We confirmed that Kissinger model incorporating the obtained parameters could simulate the two peaks. In addition, we reproduced the single peak well using the reaction-diffusion equation incorporating the obtained parameters and the appropriate trap site concentration. From the results, we interpreted that the one peak corresponds to dislocation and the other to grain-boundary.

Oral presentation

Development of simplified pelletizing process for fast reactor MOX fuels and demonstration experiment, 1; Advanced technology of microwave heating denitration method

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Tsuchida, Hayahisa*; Fujiwara, Kota*; Kaneko, Akiko*; Abe, Yutaka*

no journal, , 

Development and demonstration of elemental technologies in simplified pellet fabrication method are developed. While the cylindrical vessel is expected to have a higher speed and capacity than the flat vessel, spilling phenomenon occurs, and device design optimization is required. The mechanism of flashing and spilling, and microwave heating characteristics of high loss solution are studied. The progress of the development of elemental technologies and microwave heating test results using simulated reprocessed solutions are reported. The dielectric loss of distilled water increased from the lower end to near the central axis, and water was internally heated, and then strong convection currents were formed with a large velocity vector from the center upward. In contrast, in KCl solution with 10 mass%, which has the same dielectric loss rate as the reprocessed solution, the outer periphery was heated and large convection was hardly generated, suggesting that heating is non-uniform.

5 (Records 1-5 displayed on this page)
  • 1