Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Distance-selected topochemical dehydro-diels-alder reaction of 1,4-Diphenylbutadiyne toward crystalline graphitic nanoribbons

Zhang, P.*; Tang, X.*; Wang, Y.*; Wang, X.*; Gao, D.*; Li, Y.*; Zheng, H.*; Wang, Y.*; Wang, X.*; Fu, R.*; et al.

Journal of the American Chemical Society, 142(41), p.17662 - 17669, 2020/10

 Times Cited Count:17 Percentile:70.69(Chemistry, Multidisciplinary)

Solid-state topochemical polymerization (SSTP) is a promising method to construct functional crystalline polymeric materials, but in contrast to various reactions that happen in solution, only very limited types of SSTP reactions are reported. Diels-Alder (DA) and dehydro-DA (DDA) reactions are textbook reactions for preparing six-membered rings in solution but are scarcely seen in solid-state synthesis. Here, using multiple cutting-edge techniques, we demonstrate that the solid 1,4-diphenylbutadiyne (DPB) undergoes a DDA reaction under 10-20 GPa with the phenyl as the dienophile. The crystal structure at the critical pressure shows that this reaction is "distance-selected". The distance of 3.2${AA}$ between the phenyl and the phenylethynyl facilitates the DDA reaction, while the distances for other DDA and 1,4-addition reactions are too large to allow the bonding. The obtained products are crystalline armchair graphitic nanoribbons, and hence our studies open a new route to construct the crystalline carbon materials with atomic-scale control.

Journal Articles

Direct observation of symmetrization of hydrogen bond in $$delta$$-AlOOH under mantle conditions using neutron diffraction

Sano, Asami; Hattori, Takanori; Komatsu, Kazuki*; Kagi, Hiroyuki*; Nagai, Takaya*; Molaison, J. J.*; Dos Santos, A. M.*; Tulk, C. A.*

Scientific Reports (Internet), 8(1), p.15520_1 - 15520_9, 2018/10

 Times Cited Count:42 Percentile:92.69(Multidisciplinary Sciences)

The pressure response of hydrogen bond in aluminous hydroxide $$delta$$-AlOOH, which is an important candidate for water carrier to the deep Earth in a subducting slab, was investigated using neutron diffraction under high pressure. The symmetrization of hydrogen bond in which hydrogen locates at the center between two oxygen atoms was observed directly for the first time. The present result indicates that the changes of mineral properties such as increase in bulk modulus and sound velocities, which were previously found, were induced by the symmetrization and disorder state that was also found at just below the symmetrization pressure. Even the symmetrization is a small change in the hydrogen location but it is playing an important role in determining the physical properties of minerals.

Journal Articles

Synthesis, structure, and pressure-induced polymerization of Li$$_{3}$$Fe(CN)$$_{6}$$ accompanied with enhanced conductivity

Li, K.*; Zheng, H.*; Hattori, Takanori; Sano, Asami; Tulk, C. A.*; Molaison, J.*; Feygenson, M.*; Ivanov, I. N.*; Yang, W.*; Mao, H.-K.*

Inorganic Chemistry, 54(23), p.11276 - 11282, 2015/12

 Times Cited Count:5 Percentile:26.01(Chemistry, Inorganic & Nuclear)

Pressure-induced polymerization of triple bonds would produce conductive conjugated double bonds. To find a metal cyanide with a low polymerization pressure, anhydrous Li$$_{3}$$Fe(CN)$$_{6}$$ is synthesized and its crystal structure is determined. The irreversible bonding between the CN$$^{-}$$ can be realized by use of the industrial apparatus. The conductivity is enhanced by more than 3 orders of magnitude, which makes the polymerized Li$$_{3}$$Fe(CN)$$_{6}$$ a potential cathode material for rechargeable lithium batteries.

Oral presentation

Neutron diffraction study on $$delta$$-AlOOH at high pressure

Sano, Asami; Komatsu, Kazuki*; Hattori, Takanori; Nagai, Takaya*; Kagi, Hiroyuki*; Molaison, J.*; Moreira Dos Santos, A.*; Tulk, C.*

no journal, , 

$$delta$$-AlOOH is a high pressure polymorph of diaspore. Previous theoretical studies predict that hydrogen bond become symmetric at high pressure. Neutron diffraction experiment at high pressure found that O-D bond is elongated at high pressure, in support these predictions. Powder X-ray diffraction studies also found that the change in compressibility occurs at high pressure. To investigate the sequence to the symmetrization and its relation with the change in compressibility, we conducted neutron diffraction experiments on $$delta$$-AlOOH was conducted at SNAP, SNS. The results suggest the transition from hydrogen ordered structure to disordered structure at 6.7 GPa. Strong DH isotope effect was also found in the hydrogen bond geometry at high pressure.

4 (Records 1-4 displayed on this page)
  • 1