Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Characteristics of allowable axial cracks for pressurized pipes governed by limit load criteria

Hasegawa, Kunio; Li, Y.; Udyawar, A.*; Lacroix, V.*

International Journal of Pressure Vessels and Piping, 204, p.104952_1 - 104952_7, 2023/08

 Times Cited Count:0 Percentile:0(Engineering, Multidisciplinary)

When axial cracks were detected in pipes, failure stresses for high toughness pipes are estimated using the Limit Load Criteria. The allowable stresses for the cracked pipes are derived from the combination of the failure stresses and safety factors. The allowable sizes of crack depths and lengths are determined from the allowable stresses. From the comparison of the allowable and failure stresses for through-wall cracks, the allowable cracks are not uniform. They can be separated into three different characteristics, i) leak-before-break (LBB) and crack growth stability, ii) non-LBB and crack growth stability and iii) non-LBB and crack growth instability. Inspectors and users should pay special attention to allowable cracks with the third characteristic to prevent unexpected failure, particularly for thin-wall pipes. The allowable crack depths and lengths that require special attention can be expressed by appropriate equations.

Journal Articles

Safety assessment of allowable through-wall crack angles for pipes subjected to tensile loading

Hasegawa, Kunio; Strnadel, B.*; Lacroix, V.*; Udyawar, A.*

International Journal of Pressure Vessels and Piping, 199, p.104722_1 - 104722_5, 2022/10

 Times Cited Count:1 Percentile:28.33(Engineering, Multidisciplinary)

Fully plastic collapse stresses for high toughness pipes with circumferential cracks subjected to tensile loading can be predicted by Limit Load Criteria. The Limit Load Criteria are provided by the ASME Code Section XI. Allowable membrane stresses for part-through cracks were determined by plastic collapse stresses in combination with safety factors. The allowable stresses decrease with increasing angles of the part-through cracks. When crack angles are large, the allowable stresses of the part-through cracks are larger than the collapse stresses of through-wall cracks. For such large cracks, allowable stresses greater than the collapse stresses cause instability, and are thus detrimental to pipe integrity, especially in thin-wall pipes. In order to avoid the anxiety, it is necessary to establish maximum allowable crack angles. This paper proposes maximum allowable crack angles for allowable stresses.

Journal Articles

Allowable cracks related to penetration for part-through cracks in pipes subjected to bending stresses

Hasegawa, Kunio; Li, Y.; Strnadel, B.*; Udyawar, A.*

Journal of Pressure Vessel Technology, 144(5), p.051305_1 - 051305_6, 2022/10

 Times Cited Count:1 Percentile:20.34(Engineering, Mechanical)

Fully plastic collapse stresses for circumferentially part-through cracked pipes subjected to bending stresses are estimated by Limit Load Criteria provided by the ASME Code Section XI. Allowable crack depths were determined by using the Limit Load Criteria and that are tabulated in the ASME Code Section XI for different plant service level conditions. On the other hand, crack penetration bending stresses for part-through cracked pipes were estimated by using the Local Approach of Limit Load Criteria. By using these Criteria, the study presented in this paper obtained allowable crack depths at penetration for circumferentially part-through cracked pipes. Comparing the allowable crack depths obtained by both methods for each service level, it is evident that the allowable crack depths at penetration calculated by the Local Approach of Limit Load Criteria are almost always smaller than those at fully plastic collapse stresses calculated by the Limit Load Criteria. It was found that the allowable crack depths provided by the ASME Code Section XI are less conservative for crack penetrations.

Journal Articles

Rules for flaw interaction for subsurface flaws in operating pressurized vessels; Technical basis of code case N-877

Lacroix, V.*; Dulieu, P.*; Blasset, S.*; Tiete, R.*; Li, Y.; Hasegawa, Kunio; Bamford, W.*; Udyawar, A.*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07

4 (Records 1-4 displayed on this page)
  • 1