Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 107

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of void fraction distribution at high pressure in 4$$times$$4 simulated fuel bundle for validation of thermal-hydraulics simulation codes

Nagatake, Taku; Shibata, Mitsuhiko; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

JAEA is developing a neutronics/thermal-hydraulics coupling simulation code for light-water reactors. Thermal-hydraulic simulation codes applied to the platform are expected to evaluate void fraction distributions in fuel assemblies under operational conditions, which is necessary for neutron transport simulation, and need to be validated using void fraction distribution data in a rod bundle under high-temperature and high-pressure conditions. To obtain the data for code validation, we have been measuring the instantaneous void fraction distribution in a 4$$times$$4 simulated fuel assembly by a wire mesh sensor. In this paper, we report the results of the experiments with pressure and flow rate as parameters at a maximum pressure of 2.6 MPa.

Journal Articles

Development of a numerical simulation method for air cooling of fuel debris by JUPITER

Yamashita, Susumu; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 10(4), p.22-00485_1 - 22-00485_25, 2023/08

A detailed evaluation for air cooling of fuel debris in actual reactors will be essential in fuel debris retrieval under dry conditions. To understand the heat transfer in and around fuel debris, which is assumed as a porous medium in the primary containment vessel (PCV) mechanistically, we newly applied the porous medium model to the multiphase and multicomponent computational fluid dynamics code named JUPITER (JAEA Utility Program for Interdisciplinary Thermal-hydraulics Engineering and Research). We applied the Darcy-Brinkman model as for the porous medium model. This model has high compatibility with JUPITER because it can treat both a pure fluid and a porous medium phase simultaneously in the same manner as the one-fluid model in multiphase flow simulation. We addressed the case of natural convection with a high-velocity flow standing out nonlinear effects by implementing the Forchheimer model, including the term of the square of the velocity as a nonlinear effect to the momentum transport equation of JUPITER. We performed some simple verification and validation simulations, such as the natural convection simulation in a square cavity and the natural convective heat transfer experiment with the porous medium, to confirm the validity of the implemented model. We confirmed that the result of JUPITER agreed well with these simulations and experiments. In addition, as an application of the updated JUPITER, we performed the preliminary simulation of air cooling of fuel debris in the condition of the Fukushima Daiichi Nuclear Power Station unit 2 including the actual core materials. As a result, JUPITER calculated the temperature and velocity field stably in and around the fuel debris inside the PCV. Therefore, JUPITER has the potential to estimate the detailed and accurate thermal-hydraulics behaviors of fuel debris.

Journal Articles

Development of numerical simulation method of natural convection around heated porous medium by using JUPITER

Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

For contaminated water management in decommissioning Fukushima Daiichi Nuclear Power Stations, reduction in water injection, intermittent injection water and air cooling are considered. However, since there are uncertainties of fuel debris in the PCV, it is necessary to examine and evaluate optimal cooling methods according to the distribution state of the fuel debris and the progress of the fuel debris retrieval work in advance. We have developed a method for estimating the thermal behavior in the air cooling, including the influence of the position, heat generation and the porosity of fuel debris. Since a large-scale thermal-hydraulics analysis of natural convection is necessary for the method, JUPITER developed independently by JAEA is used. It is however difficult to perform the large-scale thermal-hydraulics analysis with JUPITER by modeling the internal structure of the debris which may consist of a porous medium. Therefore, it is possible to analyze the heat transfer of the porous medium by adding porous models to JUPITER. In this study, we report the validation of JUPITER applied the porous model and discuss which heat transfer models are most effective in porous models such as series, parallel and geometric mean models. To obtain validation data of JUPITER for the natural convective heat transfer analysis around the porous medium, we performed the heat transfer and the flow visualization experiments of the natural convection in the experimental system including the porous medium. In the comparison between the experiment and the numerical analysis with each model, the numerical result with the geometric mean model was the closest of the models to the experimental results. However, the numerical results of the temperature and the velocity were overestimated for those experimental results. In particular, the temperature near the interface between the porous medium and air was more overestimated.

Journal Articles

Development of particle collection technique by using bubble breakup phenomenon in venturi tube

Uesawa, Shinichiro; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Konsoryu, 37(1), p.55 - 64, 2023/03

In decommissioning Fukushima Daiichi Nuclear Power Station, the issue is confinement of radioactive aerosols in the primary containment vessel. Although a High Efficiency Particulate Air (HEPA) filter is used to collect the aerosol particles, pretreatment equipment such as a scrubber may be applied to reduce the load of HEPA filters. In the scrubber, the aerosol particles are removed by moving from gas to liquid through gas-liquid interface. Since the collection efficiency (CE) depends on gas-liquid interfacial area, fine bubbles are necessary to obtain high collection efficiency. JAEA developed a new particle removal technique by using bubble breakup phenomenon in a Venturi tube. To confirm usefulness of the technique, we performed the CE measurements and observed gas-liquid two-phase flow in the Venturi tube. In comparison with a straight pipe type, the Venturi type can have removed particles more 1,000 than it. The CE is almost the same as a HEPA filter. In addition, the Venturi type has the enough CE as the pretreatment equipment for various materials of particles such as Kanto loam, SUS and oil. Besides, we clarified that the CE of the Venturi type depended on the gas and liquid flow rates. The CE increases with the increase of the liquid flow rate but decreases with the increase of the gas flow rate. This is because the CE is affected by the bubble breakup phenomenon in the Venturi tube. In the experiment, we confirmed that cavitation number which is the parameter of the bubble breakup was related to the CE of the Venturi type.

Journal Articles

A Numerical simulation method to evaluate heat transfer of fuel debris in air cooling by JUPITER, 1; Project overview and the applicability to the actual reactor system

Yamashita, Susumu; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 8 Pages, 2022/10

no abstracts in English

Journal Articles

A Numerical simulation method to evaluate heat transfer of fuel debris in air cooling by JUPITER, 2; Validation of porous model for natural convective heat transfer

Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 8 Pages, 2022/10

Journal Articles

Development of particle removal technique by using bubble breakup phenomenon in converging-diverging nozzle

Uesawa, Shinichiro; Yoshida, Hiroyuki

Konsoryu Shimpojiumu 2022 Koen Rombunshu (Internet), 2 Pages, 2022/08

no abstracts in English

Journal Articles

Summary results of subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))"

Koyama, Shinichi; Nakagiri, Toshio; Osaka, Masahiko; Yoshida, Hiroyuki; Kurata, Masaki; Ikeuchi, Hirotomo; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Takano, Masahide; et al.

Hairo, Osensui Taisaku jigyo jimukyoku Homu Peji (Internet), 144 Pages, 2021/08

JAEA performed the subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))" in 2020JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning and Contaminated Water Management.

Journal Articles

Numerical simulation of microparticles motion in two-phase bubbly flow

Yoshida, Hiroyuki; Uesawa, Shinichiro

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

Journal Articles

Locally mesh-refined lattice Boltzmann method for fuel debris air cooling analysis on GPU supercomputer

Onodera, Naoyuki; Idomura, Yasuhiro; Uesawa, Shinichiro; Yamashita, Susumu; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 7(3), p.19-00531_1 - 19-00531_10, 2020/06

A dry method is one of practical methods for decommissioning the TEPCO's Fukushima Daiichi Nuclear Power Station. Japan Atomic Energy Agency (JAEA) has been evaluating the air cooling performance of the fuel debris by using the JUPITER code based on an incompressible fluid model and the CityLBM code based on the lattice Boltzmann method (LBM). However, these codes were based on a uniform Cartesian grid system, and required large computational time and cost to capture complicated debris structures. We develop an adaptive mesh refinement (AMR) version of the CityLBM code on GPU based supercomputers and apply it to thermal-hydrodynamics problems. The proposed method is validated against free convective heat transfer experiments at JAEA. It is also shown that the AMR based CityLBM code on 4 NVIDIA TESLA V100GPUs gives 6.7x speedup of the time to solution compared with the JUPITER code on 36 Intel Xeon E5-2680v3 CPUs.

Journal Articles

Observation of aerosol particle capturing behavior near gas-liquid interface

Uesawa, Shinichiro; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 7(3), p.19-00539_1 - 19-00539_9, 2020/06

Journal Articles

Sea water flow boiling heat transfer involving sea salt deposition; Role of deposited sea salt

Koizumi, Yasuo*; Uesawa, Shinichiro; Ono, Ayako; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Nihon Kikai Gakkai Netsu Kogaku Konfarensu 2019 Koen Rombunshu (USB Flash Drive), 1 Pages, 2019/10

no abstracts in English

Journal Articles

Development of evaluation method for aerosol particle deposition in a reactor building based on CFD

Horiguchi, Naoki; Miyahara, Naoya; Uesawa, Shinichiro; Yoshida, Hiroyuki; Osaka, Masahiko

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

For source term evaluation from reactor buildings (RBs) in LWR severe accidents, we have launched to develop an evaluation method of FP aerosol particle deposition onto surfaces of internal structures in an RB based on computational fluid dynamics (CFD). This paper describes development of a CFD simulation tool as the base part of the evaluation method. A preliminary simulation for a representative RB under a representative flow condition was conducted to confirm the tool performance by roughly grasping the deposition behaviors of FP aerosol particle and decontamination factor (DF) in the RB. Calculation results showed that most of aerosol particles were deposited along with gas flow formed by the internal structures in the RB, demonstrating the advantageous feature of the present CFD tool. The DFs from 4 to 14 were obtained with increase of the particle diameters from 0.1 to 10 $$mu$$m as expected in terms of the particle movement equation.

Journal Articles

Fuel debris' air cooling analysis using a lattice Boltzmann method

Onodera, Naoyuki; Idomura, Yasuhiro; Kawamura, Takuma; Uesawa, Shinichiro; Yamashita, Susumu; Yoshida, Hiroyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05

A dry method is one of practical methods for decommissioning the TEPCO's Fukushima Daiichi Nuclear Power Station. Japan Atomic Energy Agency (JAEA) has been evaluating the air cooling performance by using the JUPITER code. However, the JUPITER code requires a large computational cost to capture debris' structures. To accelerate such CFD analyses, we use the CityLBM code, which is based on the lattice Boltzmann method (LBM) and is highly optimized for GPUs. The CityLBM code is validated against free convective heat transfer experiments at JAEA, and the similar accuracy as the JUPITER code is confirmed regarding the prediction capability of heat transfer and the resulting temperature distributions. It is also shown that the elapse time of a CityLBM simulation on GPUs is reduced to 1/6 compared with that of the corresponding JUPITER simulation on CPUs with the same number of GPUs and CPUs. The results show that the LBM is promising for accelerating thermal convective simulations.

Journal Articles

Observation of aerosol particle behavior near gas-liquid interface

Uesawa, Shinichiro; Miyahara, Naoya; Horiguchi, Naoki; Yoshida, Hiroyuki; Osaka, Masahiko

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Journal Articles

Free convective heat transfer experiment to validate air-cooling performance analysis of fuel debris

Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11

Journal Articles

Development of numerical simulation method for small particles behavior in two-phase flow by combining interface and Lagrangian particle tracking methods

Yoshida, Hiroyuki; Uesawa, Shinichiro; Horiguchi, Naoki; Miyahara, Naoya; Ose, Yasuo*

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11

Journal Articles

Measurement of void fraction distribution in a 4$$times$$4 fuel bundle under high pressure condition for validation of two-phase CFD code

Nagatake, Taku; Shibata, Mitsuhiko; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 3 Pages, 2018/11

In the Fukushima Daiichi Nuclear Power Plant accident, reactor cores were cooled by natural circulation due to pump trip. To investigate the accident progress of the Fukushima Daiichi Nuclear Power Plant, it is important to understand the thermal hydraulic behavior in reactor cores including fuel bundles. Flow rate inside cores was relatively low in the natural circulation conditions, then, thermal-hydraulic behavior in the fuel bundles was different from that in the normal operating conditions. To evaluate thermal hydraulic behavior under the accidental conditions, we are developing the numerical simulation codes named TPFIT and ACE3D. These codes are based on two-phase computational fluid dynamics and can simulate the two-phase flow inside fuel bundles including low flow rate condition. Before applying these codes to the thermal-hydraulic behavior, the applicability of these codes must be confirmed. Then, in this study, in order to obtain a validation data for TPFIT and ACE3D code, thermal hydraulic experiment was performed by using test section with a simulated fuel bundle with 4$$times$$4 unheated rods. In this simulated fuel bundle, there were wire mesh sensors, and void fraction distribution data inside the simulated fuel bundle under high pressure condition (max. 2.6 MPa) was obtained. The one of the advantage of wire mesh sensor is that a void fraction distribution of cross section at the same time can be measured. In this paper, void fraction distribution of two-phase flow in a simulated fuel bundle under high pressure condition are reported.

Journal Articles

Simultaneous measurement of dry patch behavior and surface temperature distribution for copper heat transfer surface with deposition layer in nucleate pool boiling

Uesawa, Shinichiro; Ono, Ayako; Koizumi, Yasuo; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Nihon Kikai Gakkai Netsu Kogaku Konfarensu 2018 Koen Rombunshu (USB Flash Drive), 6 Pages, 2018/10

no abstracts in English

Journal Articles

Measurement of water-steam flow behavior and pressure distribution in venturi scrubber

Uesawa, Shinichiro; Horiguchi, Naoki; Suzuki, Takayuki*; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 11 Pages, 2018/10

107 (Records 1-20 displayed on this page)