Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

Okumura, Yoshikazu; Gobin, R.*; Knaster, J.*; Heidinger, R.*; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; et al.

Review of Scientific Instruments, 87(2), p.02A739_1 - 02A739_3, 2016/02

 Times Cited Count:7 Percentile:35.45(Instruments & Instrumentation)

IFMIF is an accelerator based neutron facility having two set of linear accelerators each producing 125mA/CW deuterium ion beams (250mA in total) at 40MeV. The LIPAc (Linear IFMIF Prototype Accelerator) being developed in the IFMIF-EVEDA project consists of an injector, a RFQ accelerator, and a part of superconducting Linac, whose target is to demonstrate 125mA/CW deuterium ion beam acceleration up to 9MeV. The injector has been developed in CEA Saclay and already demonstrated 140mA/100keV deuterium beam. The injector was disassembled and delivered to the International Fusion Energy Research Center (IFERC) in Rokkasho, Japan, and the commissioning has started after its reassembly 2014; the first beam production has been achieved in November 2014. Up to now, 100keV/120mA/CW hydrogen ion beam has been produced with a low beam emittance of 0.2 $$pi$$.mm.mrad (rms, normalized).

Journal Articles

Development status of pulse duty management system for injector commissioning of IFMIF/EVEDA accelerator

Takahashi, Hiroki; Narita, Takahiro; Usami, Hiroki; Sakaki, Hironao; Kojima, Toshiyuki*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.756 - 759, 2015/09

no abstracts in English

Journal Articles

Development status of data acquisition system for IFMIF/EVEDA accelerator

Usami, Hiroki; Takahashi, Hiroki; Komukai, Satoshi*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.760 - 763, 2015/09

EU and JAEA are advancing development of Linear IFMIF Prototype Accelerator (LIPAc) control system jointly, but JAEA keeps developing central control system (CCS) mainly. Data transfer during an equipment control system of CCS and EU is performed through EPICS. JAEA is using PostgreSQL as 1 of development elements in CCS and is advancing development of the system to record the whole EPICS data of LIPAc (the data acquisition system). On the other hand, a data acquisition is performed using BEAUTY (Best Ever Archive Toolset, yet) in an element test of equipment at Europe. Therefore "1 client refers to collected data by more than one server machine" with "compatibility securement of data with BEAUTY" in case of development of the data acquisition system of CCS, and, it's necessary to consider "To do a data acquisition and backup work at the same time". For the moment, former 2 are in progress. And a demonstration of the data acquisition system is being performed simultaneously with commissioning in injector. The data acquisition system is collecting data of injector other ones, and the data reference by a monitor with CSS (Control System Studio) is also possible. We will report on the current state of the development of the data acquisition system by making reference to a result of the test by injector commissioning.

Journal Articles

Progress of the high current Prototype Accelerator for IFMIF/EVEDA

Okumura, Yoshikazu; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; Gobin, R.*; Harrault, F.*; Heidinger, R.*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.203 - 205, 2015/09

Under the framework of Broader Approach (BA) agreement between Japan and Euratom, IFMIF/EVEDA project was launched in 2007 to validate the key technologies to realize IFMIF. The most crucial technology to realize IFMIF is two set of linear accelerator each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator, whose target is 125mA/CW deuterium ion beam acceleration up to 9MeV, is being developed in International Fusion Research Energy Center (IFERC) in Rokkasho, Japan. The injector developed in CEA Saclay was delivered in Rokkasho in 2014, and is under commissioning. Up to now, 100keV/120mA/CW hydrogen ion beams and 100keV/90mA/CW duty deuterium ion beams are successfully produced with a low beam emittance of 0.21 $$pi$$.mm.mrad (rms, normalized). Delivery of RFQ components will start in 2015, followed by the installation of RF power supplies in 2015.

Journal Articles

Development status of control system for IFMIF/EVEDA prototype accelerator

Takahashi, Hiroki; Narita, Takahiro; Nishiyama, Koichi; Usami, Hiroki; Sakaki, Hironao; Kasugai, Atsushi; Kojima, Toshiyuki*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.799 - 802, 2014/10

no abstracts in English

Journal Articles

Present status of J-PARC linac

Oguri, Hidetomo; Hasegawa, Kazuo; Ito, Takashi; Chishiro, Etsuji; Hirano, Koichiro; Morishita, Takatoshi; Shinozaki, Shinichi; Ao, Hiroyuki; Okoshi, Kiyonori; Kondo, Yasuhiro; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.389 - 393, 2014/10

no abstracts in English

Journal Articles

Tensile mechanical properties of a stainless steel irradiated up to 19 dpa in the Swiss spallation neutron source

Saito, Shigeru; Kikuchi, Kenji*; Hamaguchi, Dai; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; Dai, Y.*

Journal of Nuclear Materials, 431(1-3), p.44 - 51, 2012/12

 Times Cited Count:2 Percentile:17.83(Materials Science, Multidisciplinary)

To evaluate the lifetime of the beam window of an accelerator-driven transmutation system (ADS), post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out. The specimens tested in this study were made from the austenitic steel JPCA (Japan primary candidate alloy). The specimens were irradiated at SINQ Target 4 (STIP-II) with high-energy protons and spallation neutrons. The irradiation conditions were as follows: the proton energy was 580 MeV, irradiation temperatures ranged from 100 to 430$$^{circ}$$C, and displacement damage levels ranged from 7.1 to 19.5 dpa. Tensile tests were performed in air at room temperature (R.T.), 250$$^{circ}$$C and 350$$^{circ}$$C. Fracture surface observation after the tests was done by SEM (Scanning electron microscope). Results of the tensile tests performed at R.T. showed the extra hardening of JPCA at higher dose compared to the fission neutron irradiated data. At the higher temperatures, 250$$^{circ}$$C and 350$$^{circ}$$C, the extra hardening was not observed. Degradation of ductility bottomed around 10 dpa, and specimens kept their ductility until 19.5 dpa. All specimens fractured in ductile manner. The result from a microstructure observation on a specimen irradiated to 19.3 dpa at 420$$^{circ}$$C indicates that some agglomeration of bubbles on grain boundaries was observed in the specimen irradiated to 19.3 dpa at 420$$^{circ}$$C. However the tensile specimen irradiated up to 18.4 dpa at 425$$^{circ}$$C still exhibited little loss of ductility. Since He/dpa was very high on SINQ target irradiations, the formation of highly dense small bubbles in the matrix consequently avoided the accumulation of He on grain boundaries, which might have resulted in avoiding grain boundary embrittlement.

Journal Articles

Mechanical properties of austenitic stainless steels irradiated at SINQ target 4

Saito, Shigeru; Hamaguchi, Dai; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kikuchi, Kenji*; Kawai, Masayoshi*; Yong, D.*

Proceedings of 1st International Workshop on Technology and Components of Accelerator-driven Systems (TCADS-1) (Internet), 9 Pages, 2010/03

The research and development for an accelerator-driven system (ADS) to transmute minor actinide (MA) have been progressed. The target beam window of ADS submerged in the reactor will be subjected to high-energy proton and spallation neutron irradiation. To evaluate mechanical properties of irradiated materials, post irradiation examination (PIE) of the STIP (SINQ target irradiation program) specimens was carried out at JAEA. In the present study, PIE on austenitic steels JPCA and Alloy800H irradiated at SINQ target 4 (STIP-II) was conducted. Austenitic steels are preferable as the material for the target beam window of ADS from the view point of DBTT shift, which should be taken into consideration for ferritic / martensitic steels. The irradiation conditions were as follows: proton energy was 580 MeV, irradiation temperatures were ranged from 100 to 450$$^{circ}$$C, and displacement damage levels were ranged from 6.5 to 19.5 dpa. Tensile tests were performed in air at R.T. to 350$$^{circ}$$C. Results of the tensile tests performed at R.T. indicate that irradiation hardening occurred with increasing displacement damage level up to 10 dpa. At higher doses, irradiation hardening seemed to tend to saturate. Degradation of ductility was bottomed around 10 dpa and specimens kept its ductility until 19.5 dpa. All the specimens fractured in ductile manner.

Oral presentation

Tensile properties of JPCA specimens irradiated in a spallation environment

Saito, Shigeru; Kikuchi, Kenji; Hamaguchi, Dai; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; Yong, D.*

no journal, , 

no abstracts in English

Oral presentation

Mechanical properties of JPCA and Alloy800H irradiated up to 19 dpa at SINQ target4

Saito, Shigeru; Hamaguchi, Dai; Kikuchi, Kenji*; Usami, Koji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; Yong, D.*

no journal, , 

In several institutes, the research and development for an accelerator-driven transmutation system (ADS) to transmute minor actinide (MA) have been progressed. To evaluate lifetime of the beam window, post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out at JAEA. The specimens were austenitic steels JPCA and Alloy800H. The irradiation conditions of the specimens irradiated at SINQ target 4 (STIP-II) were as follows: proton energy was 580 MeV, irradiation temperatures were ranged from 100 to 450$$^{circ}$$C, and dpa were ranged from 6.5 to 19.5 dpa. All PIE works has been carried out at WASTEF and RFEF in Tokai Research and Development Center, JAEA. Tensile tests were performed in air at R.T., 250$$^{circ}$$C and 350$$^{circ}$$C. Fracture surface observation after the tests was done by SEM. Results of the tensile tests performed at R.T. indicate that irradiation hardening occurred with increasing displacement damage level up to 10 dpa. At higher doses, irradiation hardening seemed to tend to saturate. Degradation of ductility was bottomed around 10 dpa and specimens kept its ductility until 19.5 dpa. The most of specimens fractured in ductile manner, however, the specimens irradiated at the higher dose ($$>$$ 19 dpa) and higher temperature ($$>$$ 400$$^{circ}$$C) showed partially intergranular morphology.

Oral presentation

Mechanical properties of beam window materials for ADS irradiated in a spallation environment

Saito, Shigeru; Kikuchi, Kenji*; Hamaguchi, Dai; Endo, Shinya; Usami, Koji; Sakuraba, Naotoshi; Miyai, Hiromitsu; Ono, Katsuto; Matsui, Hiroki; Kawai, Masayoshi*; et al.

no journal, , 

no abstracts in English

Oral presentation

Feasibility study on a red-emitting-scintillation probe with an optical fiber for a high-rate dose-monitor

Kodama, Shohei*; Kurosawa, Shunsuke*; Morishita, Yuki; Usami, Hiroshi; Hayashi, Masateru*; Tanaka, Hiroki*; Yoshino, Masao*; Kamada, Kei*; Yoshikawa, Akira*; Torii, Tatsuo

no journal, , 

After Fukushima 1st Nuclear Plant accident, a large number of radioactive pollutants or nuclear debris with very high dose of more than a few Sv/h still have existed. To estimate the dose of such pollutants, a Japan Atomic Energy Agency research group has suggested a new technique to use a long optical fiber and a red-emitting scintillator, and the scintillation photons are read outside of high dose area. We tested the gamma-ray detection performance of a ruby (Cr:Al$$_{2}$$O$$_{3}$$) and a newly developed Cs$$_{2}$$HfI$$_{6}$$ scintillators as a scintillating probe coupled with an optical fiber in this study.

12 (Records 1-12 displayed on this page)
  • 1