Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Overview of high priority ITER diagnostic systems status

Walsh, M.*; Andrew, P.*; Barnsley, R.*; Bertalot, L.*; Boivin, R.*; Bora, D.*; Bouhamou, R.*; Ciattaglia, S.*; Costley, A. E.*; Counsell, G.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Journal Articles

Structure of $$^{33}$$Mg sheds new light on the $$N$$=20 island of inversion

Kanungo, R.*; Nociforo, C.*; Prochazka, A.*; Utsuno, Yutaka; Aumann, T.*; Boutin, D.*; Cortina-Gil, D.*; Davids, B.*; Diakaki, M.*; Farinon, F.*; et al.

Physics Letters B, 685(4-5), p.253 - 257, 2010/05

 Times Cited Count:35 Percentile:86.82(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

One-neutron removal measurement reveals $$^{24}$$O as a new doubly magic nucleus

Kanungo, R.*; Nociforo, C.*; Prochazka, A.*; Aumann, T.*; Boutin, D.*; Cortina-Gil, D.*; Davids, B.*; Diakaki, M.*; Farinon, F.*; Geissel, H.*; et al.

Physical Review Letters, 102(15), p.152501_1 - 152501_4, 2009/04

 Times Cited Count:161 Percentile:96.85(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

ITER vacuum vessel, in-vessel components and plasma facing materials

Ioki, Kimihiro*; Barabash, V.*; Cordier, J.*; Enoeda, Mikio; Federici, G.*; Kim, B. C.*; Mazul, I.*; Merola, M.*; Morimoto, Masaaki*; Nakahira, Masataka*; et al.

Fusion Engineering and Design, 83(7-9), p.787 - 794, 2008/12

 Times Cited Count:19 Percentile:76.1(Nuclear Science & Technology)

This paper presents recent results of ITER activities on Vacuum Vessel (VV), blanket, limiter, and divertor. Major results can be summarized as follows. (1) The VV design is being developed in more details considering manufacturing and assembly methods, and cost. Incorporating manufacturing studies being performed in cooperation with parties, the regular VV sector design has been nearly finalized. (2) The procurement allocation of blanket modules among 6 parties was fixed and the blanket module design has progressed in cooperation with parties. Fabrication of mock-ups for prequalification testing is under way and the tests will be performed in 2007-2008. (3) The divertor activities have progressed with the aim of launching the procurement according to the ITER project schedule.

Journal Articles

Design progress of the ITER in-wall shielding

Morimoto, Masaaki; Ioki, Kimihiro; Terasawa, Atsumi; Utin, Y.*

Fusion Science and Technology, 52(4), p.834 - 838, 2007/11

 Times Cited Count:1 Percentile:11.35(Nuclear Science & Technology)

The ITER in-wall shielding is mounted in between the double walls of the Vacuum Vessel. Boron-doped stainless steel and SS430 ferritic steel are used. The design improvement of the in-wall shielding has focused on reducing electromagnetic forces acting on shielding blocks. It has been found that the calculated electromagnetic forces have been significantly reduced. Magnetization forces have also been calculated for ferromagnetic inserts. Based on these load conditions, structural analyses have been performed and structural integrity has been validated. Shapes of boron-doped shielding plates which have low ductility are carefully designed to prevent excessive stress concentrations and not to take high mechanical loads. This makes shielding plate design simpler and more robust. Suitable dimensions and gaps between shielding blocks and between shielding block and the VV have been designed to fit to tolerances of the VV.

Journal Articles

Design progress of the ITER vacuum vessel sectors and port structures

Utin, Y.*; Ioki, Kimihiro; Alekseev, A.*; Bachmann, C.*; Cho, S. Y.*; Chuyanov, V.*; Jones, L.*; Kuzmin, E.*; Morimoto, Masaaki; Nakahira, Masataka; et al.

Fusion Engineering and Design, 82(15-24), p.2040 - 2046, 2007/10

 Times Cited Count:2 Percentile:18.75(Nuclear Science & Technology)

Recent progress of the ITER vacuum vessel (VV) design is presented. As the ITER construction phase approaches, the VV design has been improved and developed in more detail with the focus on better performance, improved manufacture and reduced cost. Based on achievements of manufacturing studies, design improvement of the typical VV sector (#1) has been nearly finalized. Design improvement of other sectors is in progress - in particular, of the VV sector #2 and #3 which interface with the ports for the neutral beam injection. For all sectors, the concept for the in-wall shielding has progressed and developed in more detail. The design progress of the VV sectors has been accompanied by the progress of the port structures. In particular, design of the NB Ports was advanced with the focus on the heat-flux components to handle the heat input of the neutral beams. Structural analyses have been performed to validate all design improvements.

Journal Articles

ITER limiters moveable during plasma discharge and optimization of ferromagnetic inserts to minimize toroidal field ripple

Ioki, Kimihiro; Chuyanov, V.*; Elio, F.*; Garkusha, D.*; Gribov, Y.*; Lamzin, E.*; Morimoto, Masaaki; Shimada, Michiya; Sugihara, Masayoshi; Terasawa, Atsumi; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

Two important design updates have been made in the ITER VV and in-vessel components recently. One is the introduction of limiters moveable during a plasma discharge, and the other is optimization of the ferromagnetic insert configuration to minimize the toroidal field ripple. In the new limiter concept, the limiters are retracted by 8 cm during the plasma flat top phase in the divertor configuration. This concept gives important advantages: (1) the particle and heat loads due to disruptions, ELMs and blobs on the limiters will be mitigated approximately by a factor 1.5 or more; (2) the gap between the plasma and the ICRH antenna can be reduced to improve the coupling of the ICRH power. The ferromagnetic inserts have previously not been planned to be installed in the outboard midplane region between equatorial ports due to irregularity of tangential ports for NB injection. The result is a relatively large ripple (1 %) in a limited region of the plasma, which nevertheless seems acceptable from the plasma performance viewpoint. However, toroidal field flux lines fluctuate 10 mm due to the large ripple in the FW region. To avoid problems due to the large TF flux line fluctuation, additional ferromagnetic inserts are now planned to be installed in the equatorial port region.

Journal Articles

Selection of design solutions and fabrication methods and supporting R&D for procurement of ITER vessel and FW/blanket

Ioki, Kimihiro*; Elio, F.*; Maruyama, So; Morimoto, Masaaki*; Rozov, V.*; Tivey, R.*; Utin, Y.*

Fusion Engineering and Design, 74(1-4), p.185 - 190, 2005/11

 Times Cited Count:5 Percentile:35.83(Nuclear Science & Technology)

The ITER project has started preparation of Procurement Specification Documents for the vacuum vessel (VV). The design of the VV and FW/Blanket has progressed in many aspects, such as an double curvature pressing instead of facet shape welding for inner and outer shells in the upper and lower inboard regions to improve the fabrication and NDT process. The plasma facing surface of the FW has been defined to avoid protruding the leading edges, especially in the inboard area. Separate FW panels are supported with a central beam, and selection of a race-track shape cross-section for the central beam provides a more robust structure against halo current EM loads and also leads to a new cooling configuration in the shield block, where the pressure drop is significantly reduced to $$sim$$0.05 MPa. A UT R&D program is also going on to achieve acceptable S/N ratio for small-angle launching waves (20-30 deg.) to a weld. Hydraulic testing has been performed to demonstrate natural convection cooling in the transient condition.

Journal Articles

ITER nuclear components, preparing for the construction and R&D results

Ioki, Kimihiro*; Akiba, Masato; Barabaschi, P.*; Barabash, V.*; Chiocchio, S.*; Daenner, W.*; Elio, F.*; Enoeda, Mikio; Ezato, Koichiro; Federici, G.*; et al.

Journal of Nuclear Materials, 329-333(1), p.31 - 38, 2004/08

 Times Cited Count:14 Percentile:66.17(Materials Science, Multidisciplinary)

The preparation of the procurement specifications is being progressed for key components. Progress has been made in the preparation of the procurement specifications for key nuclear components of ITER. Detailed design of the vacuum vessel (VV) and in-vessel components is being performed to consider fabrication methods and non-destructive tests (NDT). R&D activities are being carried out on vacuum vessel UT inspection with waves launched at an angle of 20 or 30 degree, on flow distribution tests of a two-channel model, on fabrication and testing of FW mockups and panels, on the blanket flexible support as a complete system including the housing, on the blanket co-axial pipe connection with guard vacuum for leak detection, and on divertor vertical target prototypes. The results give confidence in the validity of the design and identify possibilities of attractive alternate fabrication methods.

Journal Articles

Design improvements and R&D achievements for vacuum vessel and in-vessel components towards ITER construction

Ioki, Kimihiro*; Barabaschi, P.*; Barabash, V.*; Chiocchio, S.*; Daenner, W.*; Elio, F.*; Enoeda, Mikio; Gervash, A.*; Ibbott, C.*; Jones, L.*; et al.

Nuclear Fusion, 43(4), p.268 - 273, 2003/04

 Times Cited Count:21 Percentile:54.67(Physics, Fluids & Plasmas)

Although the basic concept of the vacuum vessel (VV) and in-vessel components of the ITER design has stayed the same, there have been several detailed design improvements resulting from efforts to raise reliability, to improve maintainability and to save money. One of the most important achievements in the VV R&D has been demonstration of the necessary fabrication and assembly tolerances. Recently the deformation due to cutting of the port extension was measured and it was shown that the deformation is small and acceptable. Further development of advanced methods of cutting, welding and NDT on a thick plate have been continued in order to refine manufacturing and improve cost and technical performance. With regard to the related FW/blanket and divertor designs, the R&D has resulted in the development of suitable technologies. Prototypes of the FW panel, the blanket shield block and the divertor components have been successfully fabricated.

Journal Articles

Design and thermal/hydraulic characteristics of the ITER-FEAT vacuum vessel

Onozuka, Masanori*; Ioki, Kimihiro*; Sannazzaro, G.*; Utin, Y.*; Yoshimura, Hideto*

Fusion Engineering and Design, 58-59, p.857 - 861, 2001/11

 Times Cited Count:15 Percentile:71.26(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Design and analysis of the vacuum vessel for RTO/RC-ITER

Onozuka, Masanori*; Ioki, Kimihiro*; Johnson, G.*; Kodama, T.*; Sonnazzaro, G.*; Utin, Y.*

Fusion Engineering and Design, 51-52(Part.B), p.249 - 255, 2000/11

 Times Cited Count:5 Percentile:37.76(Nuclear Science & Technology)

no abstracts in English

12 (Records 1-12 displayed on this page)
  • 1