Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 102

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Science-based mixed oxide property model for developing advanced oxide nuclear fuels

Kato, Masato; Oki, Takumi; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.; Ozawa, Takayuki; Uwaba, Tomoyuki; Ikusawa, Yoshihisa; Nakamura, Hiroki; Machida, Masahiko

Journal of the American Ceramic Society, 107(5), p.2998 - 3011, 2024/05

 Times Cited Count:0 Percentile:0.01(Materials Science, Ceramics)

Journal Articles

Computer code analysis of irradiation performance of an annular mixed oxide fuel element

Yokoyama, Keisuke; Uwaba, Tomoyuki

Journal of Nuclear Science and Technology, 60(10), p.1219 - 1227, 2023/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

Journal Articles

JSME series in thermal and nuclear power generation Vol.3 (Sodium-cooled fast reactor development; R&Ds on thermal-hydraulics and safety assessment towards social implementation)

Tanaka, Masaaki; Uchibori, Akihiro; Okano, Yasushi; Yokoyama, Kenji; Uwaba, Tomoyuki; Enuma, Yasuhiro; Wakai, Takashi; Asayama, Tai

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

The book, JSME Series in Thermal and Nuclear Power Generation Vol.3 Sodium-cooled Fast Reactor, was published as a 30th anniversary memorial project of Power & Energy Systems Division. This paper describes an introduction of the book on a part of key technologies regarding safety assessment, thermal-hydraulics, neutronics, and fuel and material development. This introductory paper also provides an overview of an integrated evaluation system named ARKADIA to offer the best possible solutions for challenges arising during the design process, safety assessment, and operation of a nuclear plant over its life cycle, in active use of the R&D efforts and knowledges on thermal-hydraulics and safety assessment with state-of-the-art numerical analysis technologies.

Journal Articles

Validation practices of multi-physics core performance analysis in an advanced reactor design study

Doda, Norihiro; Kato, Shinya; Hamase, Erina; Kuwagaki, Kazuki; Kikuchi, Norihiro; Ohgama, Kazuya; Yoshimura, Kazuo; Yoshikawa, Ryuji; Yokoyama, Kenji; Uwaba, Tomoyuki; et al.

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.946 - 959, 2023/08

An innovative design system named ARKADIA is being developed to realize the design of advanced nuclear reactors as safe, economical, and sustainable carbon-free energy sources. This paper focuses on ARKADIA-Design for design studies as a part of ARKADIA and introduces representative verification methods for numerical analysis methods of the core design. ARKADIA-Design performs core performance analysis of sodium-cooled fast reactors using a multiphysics approach that combines neutronics, thermal-hydraulics, core mechanics, and fuel pin behavior analysis codes. To confirm the validity of these analysis codes, validation matrices are identified with reference to experimental data and reliable numerical analysis results. The analysis models in these codes and the representative practices for the validation matrices are described.

JAEA Reports

Introduce of friction model into fuel pin bundle deformation analysis code "BAMBOO"

Uwaba, Tomoyuki; Ito, Masahiro*; Ishitani, Ikuo*

JAEA-Technology 2023-006, 36 Pages, 2023/05

JAEA-Technology-2023-006.pdf:3.45MB

The BAMBOO code developed by the Japan Atomic Energy Agency is a computer code to analyze fuel pin bundle deformation in a fast reactor wire-spaced type fuel pin bundle subassembly. In this study we developed an analysis model to consider friction at the contact points between adjacent fuel pins, and at these between outermost fuel pins and a duct that are due to bundle-duct interaction. This model deals with friction forces at contact points in the contact and separation analysis of the code, and employs a convergent calculation where contact forces are gradually determined to avoid numerical instability when the friction occurs. Analyses of BAMBOO with the model showed very slight effects on the onset of contact between outer most pins and a duct, and on directions of pin displacements, within the range of practical friction coefficients.

Journal Articles

Verification of fuel assembly bowing analysis model for core deformation reactivity evaluation

Doda, Norihiro; Uwaba, Tomoyuki; Ohgama, Kazuya; Yoshimura, Kazuo; Nemoto, Toshiyuki*; Tanaka, Masaaki; Yamano, Hidemasa

Nihon Kikai Gakkai Kanto Shibu Dai-29-Ki Sokai, Koenkai Koen Rombunshu (Internet), 5 Pages, 2023/03

An evaluation method for reactivity feedback due to core deformation during reactor power increase in sodium-cooled fast reactors is being developed for realistic core design evaluation. In this evaluation method, fuel assembly bowing was modeled with a beam element of the finite element method, and the assembly's pad contact between adjacent assemblies was modeled with a dedicated element which could consider the wrapper tube cross-sectional distortion and the pad stiffness depending on pad contact conditions. This fuel assembly bowing analysis model was verified for thermal bowing of a single assembly and assembly pad contact between adjacent assemblies in a core as past benchmark problems. The calculation results by this model showed good agreement with those of reference solutions of theoretical solutions or results by participating institutions in the benchmark. This study confirmed that the analysis model was able to calculate thermal assembly bowing appropriately.

Journal Articles

Tensile properties of modified 316 stainless steel (PNC316) after neutron irradiation over 100 dpa

Yano, Yasuhide; Uwaba, Tomoyuki; Tanno, Takashi; Yoshitake, Tsunemitsu; Otsuka, Satoshi; Kaito, Takeji

Journal of Nuclear Science and Technology, 9 Pages, 2023/00

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

The effects of fast neutron irradiation on tensile properties of modified 316 stainless steel (PNC316) claddings and wrappers for fast reactors were investigated. PNC316 claddings and wrappers were irradiated in the experimental fast reactor Joyo at irradiation temperatures between 400 and 735 $$^{circ}$$C to fast neutron doses ranging from 21 to 125 dpa. The post-irradiation tensile tests were carried out at room and irradiation temperatures. Elongations of PNC316 measured by the tensile tests were maintained at an engineering level, although the material incurred significant irradiation hardening and softening. The maximum swelling of PNC316 wrappers was about 2.5 vol.% at irradiation temperature between 400 and 500$$^{circ}$$C up to 110 dpa. Japanese 20% cold-worked austenitic steels, PNC316 and 15Cr-20Ni, had sufficient ductility and work-hardenability even after above 10 vol.% swelling, while they had very weak plastic instabilities.

Journal Articles

Development of ARKADIA-Design for design optimization support; Application of coupling method using multi-level simulation technique for plant thermal-hydraulics analysis

Doda, Norihiro; Yoshimura, Kazuo; Hamase, Erina; Yokoyama, Kenji; Uwaba, Tomoyuki; Tanaka, Masaaki

Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 3 Pages, 2022/09

ARKADIA-Design is being developed to support the optimization of sodium-cooled fast reactors in the conceptual design stage. Design optimization requires various types of numerical analysis: 1-D plant dynamics analysis for efficient evaluation of various design options and multi-dimensional analysis for a detailed evaluation of local phenomena, including multi-physics. For those analyses, ARKADIA-Design performs whole plant analyses based on the multi-level simulation (MLS) technique in which the analysis codes are coupled to simulate the phenomena in an intended degree of resolution. This paper describes an outline of the coupling analysis methods in the MLS of the ARKADIA-Design and the numerical simulations of the experimental fast breeder reactor EBR-II tests by the coupled analysis.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Development of numerical analysis codes for multi-level and multi-physics approaches in an advanced reactor design study

Tanaka, Masaaki; Doda, Norihiro; Mori, Takero; Yokoyama, Kenji; Uwaba, Tomoyuki; Okajima, Satoshi; Matsushita, Kentaro; Hashidate, Ryuta; Yada, Hiroki

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

Japan Atomic Energy Agency is developing an innovative design system named ARKADIA to achieve the design of an advanced nuclear reactor as a safe, economic, and sustainable carbon-free energy source. In the first phase of its development, ARKADIA-Design for design study and ARKADIA-Safety for safety assessment will be developed individually. In this paper, focusing on the ARKADIA-Design, the concept of the system is described and numerical analysis codes to be used for the multi-level and multi-physics analyses are introduced. Descriptions of the practical functions composed by the analysis codes and the representative problems in application studies for validation are introduced.

Journal Articles

Development of evaluation method for core deformation reactivity feedback in sodium-cooled fast reactor by coupled analysis approach

Doda, Norihiro; Uwaba, Tomoyuki; Yokoyama, Kenji; Nemoto, Toshiyuki*; Tanaka, Masaaki

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 14 Pages, 2022/03

In sodium-cooled fast reactors, reactivity feedback is generated by thermal deformation of the core fuel assembly during core temperature rise. To utilize the core deformation reactivity as an inherent safety characteristic and to eliminate excessive conservativeness of core design in the safety evaluation, an evaluation method by coupling analyses of neutronics, thermal-hydraulics, and structural deformation has been developed. An experiment of unprotected loss-of-flow event in the experimental fast breeder reactor EBR-II was analyzed. The analysis results show that the core deformation reactivity has a negative feedback effect, and that the deformation reactivity is affected not only by the fuel movement but also by the movement of reflectors around the fuel. As a result, the availability of the evaluation method for core deformation reactivity feedback by coupled analysis approach is confirmed.

JAEA Reports

Evaluation of tensile and creep properties on 9Cr-ODS steel claddings

Yano, Yasuhide; Hashidate, Ryuta; Tanno, Takashi; Imagawa, Yuya; Kato, Shoichi; Onizawa, Takashi; Ito, Chikara; Uwaba, Tomoyuki; Otsuka, Satoshi; Kaito, Takeji

JAEA-Data/Code 2021-015, 64 Pages, 2022/01

JAEA-Data-Code-2021-015.pdf:2.6MB

From a view point of practical application of fast breeder reactor cycles, which takes advantage of safety and economic efficiency and makes a contribution of volume reduction and mitigation of degree of harmfulness of high-level radioactive waste, it is necessary to develop fuel cladding materials for fast reactors (FRs) in order to achieve high-burnup. Oxide dispersion strengthened (ODS) steel have been studied for use as potential fuel cladding materials in FRs owing to their excellent resistance to swelling and their high-temperature strength in Japan Atomic Energy Agency. It is very important to establish the materials strength standard in order to apply ODS steels as a fuel cladding. Therefore, it is necessary to acquire the mechanical properties such as tensile, creep rupture strength tests and so on. In this study, tensile and creep rupture strengths of 9Cr-ODS steel claddings were evaluated using by acquired these data. Because of the phase transformation temperature of 9Cr-ODS steel, temperature range for the evaluation was divided into two ones at AC1 transformation temperature of 850$$^{circ}$$C.

Journal Articles

Development of an integrated computer code system for analyzing irradiation behaviors of a fast reactor fuel

Uwaba, Tomoyuki; Nemoto, Junichi*; Ito, Masahiro*; Ishitani, Ikuo*; Doda, Norihiro; Tanaka, Masaaki; Otsuka, Satoshi

Nuclear Technology, 207(8), p.1280 - 1289, 2021/08

 Times Cited Count:3 Percentile:35.51(Nuclear Science & Technology)

Computer codes for irradiation behavior analysis of a fuel pin and a fuel pin bundle and for coolant thermal hydraulics analysis were coupled into an integrated code system. In the system, each code provides data required by other codes and the analyzed results are shared among them. The system allows for the synthesizing of analyses of thermal, chemical and mechanical behaviors in a fuel subassembly under irradiation. A test analysis was made for a fuel subassembly containing a mixed oxide fuel pin bundle irradiated in a fast reactor. The results of the analysis were presented with transverse cross-sectional images of the fuel subassembly and three-dimensional images of a fuel pin and fuel pin bundle models. For detailed evaluation, various irradiation behaviors of all fuel pins in the subassembly were analyzed and correlated with irradiation conditions.

Journal Articles

Development of neutronics, thermal-hydraulics, and structure mechanics coupled analysis method on integrated numerical analysis for design optimization support in fast reactor

Doda, Norihiro; Uwaba, Tomoyuki; Nemoto, Toshiyuki*; Yokoyama, Kenji; Tanaka, Masaaki

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 26, 4 Pages, 2021/05

For design optimization of fast reactors, in order to consider the feedback reactivity due to thermal deformation of the core when the core temperature rises, which could not be considered in the conventional design analysis, a neutronics, thermal-hydraulics, and structure mechanics coupled analysis method has been developed. Neutronics code, plant dynamics code, and structural mechanics code are coupled by a control module in python script. This paper outlines the coupling method of analysis codes and the results of its application to an experiment in an actual plant.

Journal Articles

Computer code analysis of irradiation performance of axially heterogeneous mixed oxide fuel elements attaining high burnup in a fast reactor

Uwaba, Tomoyuki; Yokoyama, Keisuke; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*; Pelletier, M.*

Nuclear Engineering and Design, 359, p.110448_1 - 110448_7, 2020/04

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

Coupled computer code analyses of irradiation performance of axially heterogeneous mixed oxide (MOX) fuel elements with high burnup in a fast reactor were conducted. Post-irradiation experiments revealed local concentration of Cs near the interfaces between MOX fuel and blanket columns including the internal blanket of the fuel elements as well as an increase in their cladding diameters. The analyses indicated that the local Cs concentration occurred as a result of Cs axial migration from the MOX fuels toward the blanket pellets near the interfaces. Swelling of the blanket pellets induced by the formation of low-density Cs-U-O compound was not sufficient to cause pellet-to-cladding mechanical interaction (PCMI). The PCMI analyzed in the MOX fuel column regions was insignificant, and the cladding diameter increases were caused mainly by void swelling in cladding and irradiation creep due to fission gas pressure.

Journal Articles

Ultra-high temperature creep rupture and transient burst strength of ODS steel claddings

Yano, Yasuhide; Sekio, Yoshihiro; Tanno, Takashi; Kato, Shoichi; Inoue, Toshihiko; Oka, Hiroshi; Otsuka, Satoshi; Furukawa, Tomohiro; Uwaba, Tomoyuki; Kaito, Takeji; et al.

Journal of Nuclear Materials, 516, p.347 - 353, 2019/04

 Times Cited Count:15 Percentile:86.05(Materials Science, Multidisciplinary)

9Cr-ODS steel claddings consisting of tempered martensitic matrix, showed prominent creep rupture strength at 1000 $$^{circ}$$C, which surpassed that of heat-resistant austenitic steels although creep rupture strength of tempered martensitic steels is generally lower than that of austenitic steels at high temperatures. The measured creep rupture strength of 9Cr-ODS steel claddings at 1000 $$^{circ}$$C was higher than that from extrapolated creep rupture trend curves formulated using data at temperatures from 650 to 850 $$^{circ}$$C. This superior strength seemed to be owing to transformation of the matrix from the $$alpha$$-phase to the $$gamma$$-phase. The transient burst strengths for 9Cr-ODS steel were much higher than those for 11Cr-ferritic/martensitic steel (PNC-FMS). Cumulative damage fraction analyses suggested that the life fraction rule can be used for the rupture life prediction of 9Cr-ODS steel and PNC-FMS claddings in the transient and accidental events with a certain accuracy.

Journal Articles

Coupled computer code study on irradiation performance of a fast reactor mixed oxide fuel element with an emphasis on the fission product cesium behavior

Uwaba, Tomoyuki; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*

Nuclear Engineering and Design, 331, p.186 - 193, 2018/05

 Times Cited Count:4 Percentile:38.58(Nuclear Science & Technology)

A computer code for the analysis of the overall irradiation performance of a fast reactor mixed-oxide (MOX) fuel element was coupled with a specialized code for the analysis of fission product cesium behaviors in a MOX fuel element. The coupled code system allowed for the analysis of the radial and axial Cs migrations, the generation of Cs chemical compounds and fuel swelling due to Cs-fuel-reactions in association with the thermal and mechanical behaviors of the fuel element. The coupled code analysis was applied to the irradiation performance of a fast reactor MOX fuel element attaining high burnup for discussion on the axial distribution of Cs, fuel-to-cladding mechanical interaction owing to the Cs-fuel-reactions by comparing the calculated results with post irradiation examinations.

Journal Articles

Analyses of deformation and thermal-hydraulics within a wire-wrapped fuel subassembly in a liquid metal fast reactor by the coupled code system

Uwaba, Tomoyuki; Ohshima, Hiroyuki; Ito, Masahiro*

Nuclear Engineering and Design, 317, p.133 - 145, 2017/06

 Times Cited Count:9 Percentile:65.76(Nuclear Science & Technology)

The coupled numerical analysis of mechanical and thermal behaviors was performed for a wire-wrap fuel pin bundle subassembly irradiated in a fast reactor. For the analysis, the fuel pin bundle deformation analysis code BAMBOO and the thermal hydraulics analysis code ASFRE exchanged the deformation and temperature analysis results through the iterative calculations to attain convergence corresponding to the static balance between deformation and temperature. The analysis by the coupled code system showed that radial distribution of coolant temperatures in a subassembly tended to be flattened as a result of the fuel pin bundle deformation governed by cladding void swelling and irradiation creep. Such temperature distribution was slightly analyzed as a result of the small bowing of the fuel pins due to the cladding-wire interaction even when no bundle-duct interaction occurred. The effect of the spacer wire-pitch on deformation and thermal hydraulics was also investigated in this study.

Journal Articles

Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

Yano, Yasuhide; Tanno, Takashi; Oka, Hiroshi; Otsuka, Satoshi; Inoue, Toshihiko; Kato, Shoichi; Furukawa, Tomohiro; Uwaba, Tomoyuki; Kaito, Takeji; Ukai, Shigeharu*; et al.

Journal of Nuclear Materials, 487, p.229 - 237, 2017/04

 Times Cited Count:37 Percentile:96.77(Materials Science, Multidisciplinary)

Ultra-high temperature ring tensile tests were carried out to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions; temperatures ranged from room temperature to 1400$$^{circ}$$C which is near the melting point of core materials. The experimental results showed that tensile strength of 9Cr-ODS steel claddings was highest in the core materials at the ultra-high temperatures between 900 and 1200$$^{circ}$$C, but that there was significant degradation in tensile strength of 9Cr-ODS steel claddings above 1200$$^{circ}$$C. This degradation was attributed to grain boundary sliding deformation with $$gamma$$/$$delta$$ transformation, which was associated with reduced ductility. On the other hand, tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 $$^{circ}$$C unlike the other tested materials. Present study includes the result of "R&D of ODS ferritic steel fuel cladding for maintaining fuel integrity at the high temperature accident condition" entrusted to Hokkaido University by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Journal Articles

Evaluation on tolerance to failure of ODS ferritic steel claddings at the accident conditions of fast reactors

Uwaba, Tomoyuki; Yano, Yasuhide; Otsuka, Satoshi; Naganuma, Masayuki; Tanno, Takashi; Oka, Hiroshi; Kato, Shoichi; Kaito, Takeji; Ukai, Shigeharu*; Kimura, Akihiko*; et al.

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04

Tolerance of fast rector fuel elements to failure in the typical accident conditions was evaluated for the oxide-dispersion-strengthened (ODS) ferritic steel claddings that are candidate of the cladding material for advanced fast reactors. The evaluation was based on the cladding creep damage, which was quantified by the cumulative damage fractions (CDFs). It was shown that the CDFs of the ODS ferritic steel cladding were substantially lower than the breach limit of 1.0 in the loss of flow and transient over power conditions until a passive reactor shutdown system operates.

102 (Records 1-20 displayed on this page)