Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 90

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

RF systems of J-PARC proton synchrotrons for high-intensity longitudinal beam optimization and handling

Tamura, Fumihiko; Yamamoto, Masanobu; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Okita, Hidefumi; Seiya, Kiyomi*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; et al.

Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.305 - 311, 2024/03

The application of MA cores to the accelerating rf cavities in high intensity proton synchrotrons was pioneered for the J-PARC synchrotrons. The MA cavities can generate high accelerating voltages. The wideband frequency response of the MA cavity enables the frequency sweep without the tuning loop. The dual harmonic operation is indispensable for the longitudinal bunch shaping to alleviate the space charge effects in the RCS. These advantages of the MA cavity are also disadvantages when looking at them from a different perspective. Since the wake voltage consists of several harmonics, the beam loading compensation must be multiharmonic. The operation of tubes in the final stage amplifier is not trivial when accelerating very high intensity beams; the output current is high and the anode voltage is also multiharmonic. We summarize our effort against these issues in the operation of the RCS and MR for more than 10 years.

Journal Articles

Weakened oxygen adsorbing the Pt-O bond of the Pt catalyst induced by vacancy introduction into carbon support

Okazaki, Hiroyuki*; Idesaki, Akira*; Koshikawa, Hiroshi*; Matsumura, Daiju; Ikeda, Takashi*; Yamamoto, Shunya*; Yamaki, Tetsuya*

Journal of Physical Chemistry C, 127(49), p.23628 - 23633, 2023/12

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Journal Articles

Consideration of high intensity single bunch acceleration in J-PARC RCS

Tamura, Fumihiko; Okita, Hidefumi; Hotchi, Hideaki*; Saha, P. K.; Meigo, Shinichiro; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Seiya, Kiyomi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 68, 2023/11

The J-PARC 3GeV synchrotron (RCS) provides high intensity proton beams to the Materials and Life Science Experimental Facility (MLF) and the Main Ring (MR). The harmonic number (h) of the RCS is 2 and the RCS normally accelerates two bunches. For some experiments at the MLF, a single bunch is preferred. In this case, one of the rf bucket is filled with protons and the other is empty. Therefore the beam intensity is halved. If the RCS can accelerate with h=1, the intensity per bunch can be doubled, enabling to provide single bunch beams to the MLF with the maximum intensity. This possibly increases the MR beam power by injecting high intensity single bunches eight times. In this presentation, we report mainly on the consideration of h=1 acceleration in the RCS by longitudinal simulations.

Journal Articles

Changes in electronic structure of carbon supports for Pt catalysts induced by vacancy formation due to Ar$$^{+}$$ irradiation

Okazaki, Hiroyuki*; Kakitani, Kenta*; Kimata, Tetsuya*; Idesaki, Akira*; Koshikawa, Hiroshi*; Matsumura, Daiju; Yamamoto, Shunya*; Yamaki, Tetsuya*

Journal of Chemical Physics, 152(12), p.124708_1 - 124708_5, 2020/03

 Times Cited Count:4 Percentile:25.92(Chemistry, Physical)

Journal Articles

Imidazolium cation based anion-conducting electrolyte membranes prepared by radiation induced grafting for direct hydrazine hydrate fuel cells

Yoshimura, Kimio; Koshikawa, Hiroshi; Yamaki, Tetsuya; Shishitani, Hideyuki*; Yamamoto, Kazuya*; Yamaguchi, Susumu*; Tanaka, Hirohisa*; Maekawa, Yasunari

Journal of the Electrochemical Society, 161(9), p.F889 - F893, 2014/06

 Times Cited Count:21 Percentile:59.69(Electrochemistry)

Graft-type anion-conducting electrolyte membranes (AEMs) with imidazolium cations on graft polymers were synthesized through radiation-induced graft polymerization of ${it N}$-vinylimidazole (NVIm) on poly(ethylene-co-tetrafluoroethylene) (ETFE) films, followed by ${it N}$-propylation and ion-exchange reactions. The ${it N}$-propylation proceeded quantitatively, whereas the ion-exchange reactions in 1 M KOH at 60$$^{circ}$$C were accompanied by partial $$beta$$-elimination of the imidazolium cations(AEM2), which exhibited an ion-exchange capacity (IEC) of 0.85 mmol g$$^{-1}$$ and ionic conductivity of 10 mS cm$$^{-1}$$. AEM2 showed alkaline stability at 60$$^{circ}$$C but it gradually degraded at 80$$^{circ}$$C for ca. 150 h. The copolymer-type AEM (AEM3) with an IEC of 1.20 mmol g$$^{-1}$$ was prepared through the copolymerization of NVIm with styrene on ETFE films, followed by the same ${it N}$-propylation and ion-exchange reactions. AEM3 was shown higher alkaline durability in 1 M KOH at 80$$^{circ}$$C. As a result, it exhibited higher conductivity ($$>$$10 mS cm$$^{-1}$$) for 250 h. Therefore, alkylimidazolium cations in copolymer grafts are a promising anion conducting group for alkaline-durable AEMs. A maximum power density of 75 mW cm$$^{-2}$$ is obtained for AEM3 in a direct hydrazine hydrate fuel cell.

Journal Articles

Sorption of Eu(III) on granite; EPMA, LA-ICP-MS, batch and modeling studies

Fukushi, Keisuke*; Hasegawa, Yusuke*; Maeda, Koshi*; Aoi, Yusuke*; Tamura, Akihiro*; Arai, Shoji*; Yamamoto, Yuhei*; Aosai, Daisuke*; Mizuno, Takashi

Environmental Science & Technology, 47(22), p.12811 - 12818, 2013/11

 Times Cited Count:27 Percentile:58.19(Engineering, Environmental)

Eu(III) sorption on granite was examined by the combined microscopic and macroscopic approaches. Polished thin sections of the granite were reacted with solutions containing 10 $$mu$$M of Eu(III) and analyzed using EPMA and LA-ICP-MS. The Eu enrichment up to 6 wt.% was observed on most of the biotite grains. The Eu-enriched parts commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode is cation exchange in the interlayer. Batch Eu(III) sorption experiments on granite and biotite powders were conducted. The macroscopic sorption behavior of biotite was consistent with that of granite. The obtained sorption edges can be reproduced reasonably by the modeling considering single-site cation exchange reactions. Granite is complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by single phase can be representative for the bulk sorption reaction in complex mineral assemblages.

Journal Articles

Counter-anion effect on the properties of anion-conducting polymer electrolyte membranes prepared by radiation-induced graft polymerization

Koshikawa, Hiroshi; Yoshimura, Kimio; Sinnananchi, W.; Yamaki, Tetsuya; Asano, Masaharu; Yamamoto, Kazuya*; Yamaguchi, Susumu*; Tanaka, Hirohisa*; Maekawa, Yasunari

Macromolecular Chemistry and Physics, 214(15), p.1756 - 1762, 2013/08

 Times Cited Count:15 Percentile:43.24(Polymer Science)

Graft-type anion-conducting polymer electrolyte membranes were prepared by the radiation-induced graft polymerization of chloromethylstyrene into poly(ethylene-co-tetrafluoroethylene) (ETFE) films and subsequent quaternization with trimethylamine to evaluate the counter anion effects on fuel cell properties. The hydroxide form was maintained in -saturated water to prevent the bicarbonate formation. The hydroxide form showed conductivity and water uptake four and two times higher than the chloride and bicarbonate forms. The hydroxide form is thermally and chemically less stable, resulting in the tendency to absorb water and to convert to the bicarbonate form.

Journal Articles

Assessment of olfactory nerve by SPECT-MRI image with nasal thallium-201 administration in patients with olfactory impairments in comparison to healthy volunteers

Shiga, Hideaki*; Taki, Junichi*; Washiyama, Koshin*; Yamamoto, Jumpei*; Kinase, Sakae; Okuda, Koichi*; Kinuya, Seigo*; Watanabe, Naoto*; Tonami, Hisao*; Koshida, Kichiro*; et al.

PLOS ONE (Internet), 8(2), p.e57671_1 - e57671_8, 2013/02

 Times Cited Count:18 Percentile:68.67(Multidisciplinary Sciences)

Journal Articles

Alkaline durable anion exchange membranes based on graft-type fluoropolymer films for hydrazine hydrate fuel cell

Yoshimura, Kimio; Koshikawa, Hiroshi; Yamaki, Tetsuya; Maekawa, Yasunari; Yamamoto, Kazuya*; Shishitani, Hideyuki*; Asazawa, Koichiro*; Yamaguchi, Susumu*; Tanaka, Hirohisa*

ECS Transactions, 50(2), p.2075 - 2081, 2012/10

no abstracts in English

Journal Articles

Detailed analyses of key phenomena in core disruptive accidents of sodium-cooled fast reactors by the COMPASS code

Morita, Koji*; Zhang, S.*; Koshizuka, Seiichi*; Tobita, Yoshiharu; Yamano, Hidemasa; Shirakawa, Noriyuki*; Inoue, Fusao*; Yugo, Hiroaki*; Naito, Masanori*; Okada, Hidetoshi*; et al.

Nuclear Engineering and Design, 241(12), p.4672 - 4681, 2011/12

 Times Cited Count:15 Percentile:73.97(Nuclear Science & Technology)

A five-year research project has been initiated in 2005 to develop a code based on the MPS (Moving Particle Semi-implicit) method for detailed analysis of key phenomena in core disruptive accidents (CDAs) of sodium-cooled fast reactors (SFRs). The code is named COMPASS (Computer Code with Moving Particle Semi-implicit for Reactor Safety Analysis). The key phenomena include (1) fuel pin failure and disruption, (2) molten pool boiling, (3) melt freezing and blockage formation, (4) duct wall failure, (5) low-energy disruptive core motion, (6) debris-bed coolability, (7) metal-fuel pin failure. Validation study of COMPASS is progressing for these key phenomena. In this paper, recent COMPASS results of detailed analyses for the several key phenomena are summarized. The present results demonstrate COMPASS will be useful to understand and clarify the key phenomena of CDAs in SFRs in details.

Journal Articles

Preparation of anion-exchange membranes for fuel cell applications by $$gamma$$-ray pre-irradiation grafting

Koshikawa, Hiroshi; Yamaki, Tetsuya; Asano, Masaharu; Maekawa, Yasunari; Yamaguchi, Susumu*; Yamamoto, Kazuya*; Asazawa, Koichiro*; Yamada, Koji*; Tanaka, Hirohisa*

Proceedings of 12th International Conference on Radiation Curing in Asia (RadTech Asia 2011) (Internet), p.240 - 241, 2011/06

The anion-exchange membranes (AEM) for fuel cells were prepared by the radiation-induced graft polymerization of chloromethylstyrene into poly(ethylene-co-tetrafluoroethylene) (ETFE) films and subsequent quaternization of the grafts with trimethylamine. When the AEM were treated in 1M-KOH and washed with N$$_{2}$$-saturated water, the membranes with chloride form can be converted quantitatively to hydroxide form. However, the hydroxide form was easily converted to the bicarbonate form by the treatment in non-bubbled (CO$$_{2}$$ dissolved) water. When we introduced the crosslinkers in polymer grafts, which is proved to be very effective in the proton conducting PEM having a poly(styrenesulfonic acid) grafts, the grafted AEM with both chloride and hydroxide forms showed only slight decrease of water uptake. It should be noted that AEM with hydroxide form showed very high tendency to absorb water.

Journal Articles

COMPASS code development; Validation of multi-physics analysis using particle method for core disruptive accidents in sodium-cooled fast reactors

Koshizuka, Seiichi*; Morita, Koji*; Arima, Tatsumi*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Naito, Masanori*; Shirakawa, Noriyuki*; Okada, Hidetoshi*; Uehara, Yasushi*; et al.

Proceedings of 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8) (CD-ROM), 11 Pages, 2010/10

In this paper, FY2009 results of the COMPASS code development are reported. Validation calculations for melt freezing and blockage formation, eutectic reaction of metal fuel, duct wall failure (thermal-hydraulic analysis), fuel pin failure and disruption and duct wall failure (structural analysis) are shown. Phase diagram calculations, classical and first-principles molecular dynamics were used to investigate physical properties of eutectic reactions: metallic fuel/steel and control rod material/steel. Basic studies for the particle method and SIMMER code calculations supported the COMPASS code development. COMPASS is expected to clarify the basis of experimentally-obtained correlations used in SIMMER. Combination of SIMMER and COMPASS will be useful for safety assessment of CDAs as well as optimization of the core design.

Journal Articles

Ion beam modification of Pt electrocatalyst nanoparticles for polymer electrolyte membrane fuel cells

Yamaki, Tetsuya; Yamamoto, Shunya; Hakoda, Teruyuki; Koshikawa, Hiroshi

Materials Research Society Symposium Proceedings, Vol.1217, p.151 - 157, 2010/07

This study concerns our attempt to improve catalytic properties of nanoparticles of Pt and Pt-group metals by modification with ion beams. We expected that a completely high electronic excitation induced by high-energy ion beams could achieve new atomic arrangement and electronic states at the nanoparticle surface. Pt nanoparticles were prepared on a glassy carbon plate by a sputtering method and then irradiated with proton beams at energies of 0.38 and 10 MeV at room temperature. Cyclic voltammetry in a 0.5 M sulfonic acid aqueous solution suggested that the lower-energy beam irradiation enhanced the active surface area of the Pt nanoparticles, calculated from the coulombic charge for hydrogen adsorption. Thus, the nanoparticles will be modified by the proton-beam excitation so that they have higher surface reactivity. The mechanism determining this irradiation effect is still unclear at present, but we may discuss it in relation to a change in the interfacial crystal structure induced by the irradiation.

Journal Articles

Detailed analyses of specific phenomena in core disruptive accidents of sodium-cooled fast reactors by the COMPASS code

Morita, Koji*; Zhang, S.*; Arima, Tatsumi*; Koshizuka, Seiichi*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Shirakawa, Noriyuki*; Inoue, Fusao*; Yugo, Hiroaki*; et al.

Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 9 Pages, 2010/05

A five-year research project has been initiated in 2005 to develop a code based on the MPS (Moving Particle Semi-implicit) method for detailed analysis of specific phenomena in core disruptive accidents (CDAs) of sodium-cooled fast reactors (SFRs). The code is named COMPASS (Computer Code with Moving Particle Semi-implicit for Reactor Safety Analysis). The specific phenomena include (1) fuel pin failure and disruption, (2) molten pool boiling, (3) melt freezing and blockage formation, (4) duct wall failure, (5) low-energy disruptive core motion, (6) debris-bed coolability, and (7) metal-fuel pin failure. Validation study of COMPASS is progressing for these key phenomena. In this paper, recent COMPASS results of detailed analyses for the several specific phenomena are summarized.

Journal Articles

Validation for multi-physics simulation of core disruptive accidents in sodium-cooled fast reactors by COMPASS code

Koshizuka, Seiichi*; Morita, Koji*; Arima, Tatsumi*; Zhang, S.*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Naito, Masanori*; Shirakawa, Noriyuki*; Okada, Hidetoshi*; et al.

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13) (CD-ROM), 11 Pages, 2009/09

Dispersion and freezing of molten core material was calculated by the COMPASS code to compare with the experimental data of GEYSER. Molten core material flowed up with freezing on the pipe inner surface. As a molten pool behavior, CABRI-TPA2 experiment was analyzed, where a sphere of solid steel was surrounded by solid fuel. Power was injected to cause melting and boiling of the steel sphere. SCARABEE-BE+3 test was analyzed by COMPASS as a validation of failure of duct walls.

Journal Articles

Next generation safety analysis methods for SFRs, 3; Thermal hydraulics models of COMPASS code and experimental analyses

Yamamoto, Yuichi*; Hirano, Etsujo*; Oue, Masaya*; Shimizu, Sensuke*; Shirakawa, Noriyuki*; Koshizuka, Seiichi*; Morita, Koji*; Yamano, Hidemasa; Tobita, Yoshiharu

Proceedings of 17th International Conference on Nuclear Engineering (ICONE-17) (CD-ROM), 10 Pages, 2009/06

The COMPASS code is designed to analyze multi-physics problems involving thermal hydraulics, structure and phase change, in a unified framework of MPS method. In FY2006 and 2007, development of the basic functions of COMPASS was completed and fundamental verification calculations were carried out. In FY2007, the integrated verification program using available experimental data for key phenomena in CDAs was also started. In this paper, we show the basic verification calculations for the phase change model of COMPASS and the results of experimental analyses, together with the outline of the formulation of MPS method and the conceptual design of the COMPASS code.

Journal Articles

Next generation safety analysis methods for SFRs, 6; SCARABEE BE+3 analysis with SIMMER-III and COMPASS codes featuring duct-wall failure

Uehara, Yasushi*; Shirakawa, Noriyuki*; Naito, Masanori*; Okada, Hidetoshi*; Yamano, Hidemasa; Tobita, Yoshiharu; Yamamoto, Yuichi*; Koshizuka, Seiichi*

Proceedings of 17th International Conference on Nuclear Engineering (ICONE-17) (CD-ROM), 10 Pages, 2009/06

A mesoscopic approach with the COMPASS code is expected to advance the understanding of key phenomena during event progression in core disruptive accidents. In this paper, the overall analysis of SCARABEE-BE+3 test with the SIMMER-III is described as well as the simulation with COMPASS, focusing on the duct wall failure in a small temporal and spatial window cut from the SIMMER-III analysis results.

Journal Articles

COMPASS code development and validation; A Multi-physics analysis of core disruptive accidents in sodium-cooled fast reactors using particle method

Koshizuka, Seiichi*; Liu, J.*; Morita, Koji*; Arima, Tatsumi*; Zhang, S.*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Naito, Masanori*; Shirakawa, Noriyuki*; et al.

Proceedings of 2009 International Congress on Advances in Nuclear Power Plants (ICAPP '09) (CD-ROM), 1 Pages, 2009/05

A computer code, named COMPASS, is developed for multi-physics analysis of core disruptive accidents of sodium-cooled fast reactors (SFRs). A meshless method, called MPS method, is employed since complex thermal-hydraulics and structural problems with various phase change processes have to be analyzed. Verification for separeted basic processes and validation for practical phenomena are carried out. COMPASS is also expected to investigate molten fuel discharge to avoid re-criticality in large size SFR cores. Both MOX and metal fuels are considered. Eutectic reactions between the metal fuel and the cladding material are investigated by phase diagram calculation, classical and first-principles molecular dynamics. Basic studies relevant to the numerical methods support the code development of COMPASS. Parallel processing is implemented by OpenMP to treat large-scale problems. A visualization tool is also prepared by using AVS.

Journal Articles

Code development for multi-physics and multi-scale analysis of core disruptive accidents in fast reactors using particle methods

Koshizuka, Seiichi*; Morita, Koji*; Arima, Tatsumi*; Zhang, S.*; Tobita, Yoshiharu; Yamano, Hidemasa; Ito, Takahiro*; Shirakawa, Noriyuki*; Naito, Masanori*; Okada, Hidetoshi*; et al.

Proceedings of 16th Pacific Basin Nuclear Conference (PBNC-16) (CD-ROM), 6 Pages, 2008/10

A computer code, named COMPASS, is being developed for various complex phenomena of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). The COMPASS is designed to analyze multi-physics problems involving thermal hydraulics, structure and phase change, in a unified framework of the MPS (Moving Particle Semi-implicit) method. The project has been carried out by six organizations for five years from FY2005 to FY2009. In this paper, the outcomes of the project in FY2007 are presented. Three validation calculations were completed by following the validation plan: melt freezing and blockage formation, molten pool boiling, and duct wall failure. The COMPASS code development was supported by basic studies of the numerical method, material science for eutectic reaction of the metal fuel, and SIMMER-III analyses.

Journal Articles

The Development of Fe-nodules surrounding biological material mediated by microorganisms

Yoshida, Hidekazu; Yamamoto, Koshi*; Amano, Yuki; Katsuta, Nagayoshi*; Hayashi, Toru*; Naganuma, Takeshi

Environmental Geology, 55(6), p.1363 - 1374, 2008/09

 Times Cited Count:9 Percentile:26.82(Environmental Sciences)

Takashikozo is a phenomenon of Quaternary sediments in Japan. They are cylindrical Fe-oxyhydroxide nodules that form as plaques round plant roots. Structural features suggest that after the roots have decayed, the central space where the roots were situated acts as a flow path for oxidized water. Analysis of microbial 16S rDNA extracted from the nodules identified iron-oxidizing bacteria encrusted round the roots where they are the likely initiators of nodule formation. Geological history and nanofossil evidence suggest that these Fe-nodules may have been buried at a depth of up to several tens of meters for a least 100000 years in reducing Quaternary sediments. Thus Fe-oxyhydroxide nodules with water and rock by microbial mediation can persist under reducing conditions. The phenomenon is significant as an analogue of post-closure conditions in radioactive waste repositories, since it could influence nuclide migration.

90 (Records 1-20 displayed on this page)