Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Near term test plan using HTTR (High Temperature engineering Test Reactor)

Takada, Shoji; Iigaki, Kazuhiko; Shinohara, Masanori; Tochio, Daisuke; Shimazaki, Yosuke; Ono, Masato; Yanagi, Shunki; Nishihara, Tetsuo; Fukaya, Yuji; Goto, Minoru; et al.

Nuclear Engineering and Design, 271, p.472 - 478, 2014/05

 Times Cited Count:8 Percentile:53.31(Nuclear Science & Technology)

JAEA has carried out research and development to establish the technical basis of HTGRs using HTTR. To connect hydrogen production system to HTTR, it is necessary to ensure the reactor dynamics when thermal-load of the system is lost. Thermal-load fluctuation test is planned to demonstrate the reactor dynamics stability and to validate plant dynamics codes. It will be confirmed that the reactor become stable state during losing a part of removed heat at heat-sink. A temperature coefficient of reactivity is one of the important parameters for core dynamics calculations, and changes with burnup because of variance of fuel compositions. Measurement of temperature coefficient of reactivity has been conducted to confirm the validity of calculated temperature coefficient of reactivity. A LOFC test using HTTR has been carried out to verify the inherent safety under the condition of LOFC while the reactor shut-down system disabled.

JAEA Reports

Temperature coefficient measurement test of HTTR; Burn-up characteristic of temperature coefficients at reactor power 30 kW and 9 MW

Ono, Masato; Goto, Minoru; Shinohara, Masanori; Nojiri, Naoki; Tochio, Daisuke; Shimazaki, Yosuke; Yanagi, Shunki

JAEA-Technology 2013-001, 35 Pages, 2013/03

JAEA-Technology-2013-001.pdf:6.04MB

The temperature coefficient measurements of the HTTR have been carried out. In the beginning of the operation, temperature coefficients at the reactor power of 30 kW and 9 MW were obtained through 1999 to 2000. The operation days of the HTTR fuel reached 375 Effective Full Power Days (EFPD), which is over a half of design operation days (660 EFPD). The temperature coefficient measurements were conducted at the same power levels of 30 kW and 9 MW to evaluate burnup effect. Also, to measure temperature coefficient in high accuracy, technique of core temperature control and technique of core temperature homogenization were established.

Journal Articles

Improvement of numerical analytical model for temperature of primary biological shielding toward HTTR-LOFC test with VCS inactive

Takada, Shoji; Yanagi, Shunki; Iigaki, Kazuhiko; Shinohara, Masanori; Tochio, Daisuke; Shimazaki, Yosuke; Ono, Masato; Sawa, Kazuhiro

UTNL-R-0483, p.9_1 - 9_10, 2013/03

no abstracts in English

JAEA Reports

Relocation work of temporary thermocouples for measuring the vessel cooling system in the safety demonstration test

Shimazaki, Yosuke; Shinohara, Masanori; Ono, Masato; Yanagi, Shunki; Tochio, Daisuke; Iigaki, Kazuhiko

JAEA-Technology 2012-010, 24 Pages, 2012/05

JAEA-Technology-2012-010.pdf:6.92MB

It is necessary to confirm that the temperature of water cooling panel of the vessel cooling system (VCS) is controlled under the allowable working temperature during the safety demonstration test because the water cooling panel temperature rises due to stop of cooling water circulation pumps. Therefore, several temporary thermocouples are relocated to the side cooling panel outlet ring header of VCS and the water cooling panel near the stabilizers of RPV in order to observe the temperature change of VCS. The relocated thermocouples can measure the temperature change with starting of the water circulation pumps of VCS. So it is confirmed that the relocated thermocouples can observe the VCS temperature change in the safety demonstration test.

JAEA Reports

Plant data evaluation of performance confirmation test in HTTR after Tohoku-Pacific Ocean Earthquake

Ono, Masato; Tochio, Daisuke; Shinohara, Masanori; Shimazaki, Yosuke; Yanagi, Shunki; Iigaki, Kazuhiko

JAEA-Technology 2012-004, 46 Pages, 2012/03

JAEA-Technology-2012-004.pdf:3.17MB

Tohoku-Pacific Ocean Earthquake occurred on March 11th 2011 and the earthquake intensity of an upper 5 on the Japanese scale was observed in Oarai town. HTTR conducted the confirmation test on cold state in order to ensure the facilities/instruments of reactor building operate normally. In this test, the plant data in the facilities/instruments start up phase and continue steady operation phase were measured and compared with the previous operation data, and the soundness of facilities/instruments is evaluated. As a result, the facilities/instruments operate normally and keep safety and performance of the HTTR were ensured. This paper reports the evaluation of the plant data.

JAEA Reports

Safety demonstration test using the High Temperature Engineering Test Reactor (HTTR); Cold test of the loss of forced cooling

Shinohara, Masanori; Yanagi, Shunki; Tochio, Daisuke; Shimazaki, Yosuke; Nojiri, Naoki; Owada, Hiroyuki; Sato, Nao; Sagawa, Hiroshi; Umeda, Masayuki

JAEA-Technology 2011-029, 39 Pages, 2011/12

JAEA-Technology-2011-029.pdf:3.03MB

JAEA plans and performs the safety demonstration test using the HTTR to develop High Temperature Gas Reactor technologies. Cold test of the loss of forced cooling was conducted prior to the safety demonstration test, to check test procedure and plant behavior. Cold test consists of two phases, Phase1, 1 or 2 Vessel Cooling System (VCS) terminates, in the Phase2, all 3 Gas circulators and 1 VCS terminates. Cold test could confirm test process, and obtain data necessary to analysis and 2-dimensional horizontal sectional model analysis was verified to simulate actual measurement value.

Oral presentation

Plant data evaluation of performance confirmation test in HTTR after Tohoku-Pacific Ocean Earthquake

Ono, Masato; Tochio, Daisuke; Shinohara, Masanori; Shimazaki, Yosuke; Yanagi, Shunki; Iigaki, Kazuhiko

no journal, , 

Tohoku-Pacific Ocean Earthquake occurred on March 11th 2011 and the earthquake intensity of an upper 5 on the Japanese scale was observed in Oarai town. HTTR conducted the confirmation test on cold state in order to ensure the facilities/instruments of reactor building operate normally. In this test, the plant data in the facilities/instruments start-up phase and continue steady operation phase were measured and compared with the previous operation data, and the soundness of facilities/instruments is evaluated. As a result, in after the earthquake, the facilities/instruments operate normally and the reactor cooling function of the HTTR were ensured.

Oral presentation

Relocation work of temporary thermocouples for measuring the vessel cooling system in the safety demonstration test using HTTR

Shimazaki, Yosuke; Shinohara, Masanori; Ono, Masato; Yanagi, Shunki; Tochio, Daisuke; Iigaki, Kazuhiko

no journal, , 

no abstracts in English

Oral presentation

The Design of pipes in the cryostat for the JT-60SA

Onishi, Yoshihiro; Kamiya, Koji; Kuramochi, Masaya; Yanagi, Shunki; Honda, Atsushi; Kizu, Kaname; Koide, Yoshihiko; Yoshida, Kiyoshi

no journal, , 

no abstracts in English

Oral presentation

Thermometer attachment methods on a helium pipe for JT-60SA

Natsume, Kyohei; Murakami, Haruyuki; Yanagi, Shunki; Kizu, Kaname; Yoshida, Kiyoshi

no journal, , 

Valve Boxes (VBs) and Coil Terminal Boxes (CTBs) will be fabricated as magnet shared components and be installed on the cryostat of JT-60SA. VB is for distributing cryogens to superconducting magnets, cryopumps, and thermal shields. CTB includes the interface between high temperature superconducting current leads and power supply bus bars. In this presentation, attachment methods of thermal sensors on the cryogen pipes in vacuum VB or CTB are described. An Experiment to measure the helium in the pipe has been conducted using the two different attachment methods. The experimental results are compared and estimated by considering measurement accuracy and productivity.

10 (Records 1-10 displayed on this page)
  • 1