Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 291

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Rail DRAGON: Long-reach Bendable Modularized Rail Structure for Constant Observation inside PCV

Yokomura, Ryota*; Goto, Masataka*; Yoshida, Takehito*; Warisawa, Shinichi*; Hanari, Toshihide; Kawabata, Kuniaki; Fukui, Rui*

IEEE Robotics and Automation Letters (Internet), 9(4), p.3275 - 3282, 2024/04

To reduce errors in the remote control of robots during decommissioning, we developed a Rail DRAGON, which enables continuous observation of the work environment. The Rail DRAGON is constructed by assembling and pushing a long rail structure inside the primary containment vessel (PCV), and then repeatedly deploying several monitoring robots on the rails to enable constant observation in a high-radiation environment. In particular, we have developed the following components of Rail DRAGON: bendable rail modules, straight rail modules, a basement unit, and monitoring robots. Concretely, this research proposes and demonstrates a method to realize an ultralong articulated structure with high portability and workability. In addition, it proposes and verifies the feasibility of a method for deploying observation equipment that can be easily deployed and replaced, while considering disposal.

Journal Articles

Heterogeneity effects in micro-beam XRF scanning spectroscopy of binary powdered mixtures and lake sediments

Katsuta, Nagayoshi*; Umemura, Ayako*; Naito, Sayuri*; Masuki, Yuma*; Itayama, Yui*; Niwa, Masakazu; Shirono, Shinichi*; Yoshida, Hidekazu*; Kawakami, Shinichi*

Spectrochimica Acta, Part B, 210, p.106817_1 - 106817_11, 2023/12

 Times Cited Count:0 Percentile:0.02(Spectroscopy)

X-ray fluorescence (XRF) scanning of lacustrine sediments has been used to extend the approach to a wider range of elemental records in both ages and timescales of variations in past environments and climates. However, one of severe problems with effects of the XRF intensity by grain size and mineralogical composition known as "heterogeneity effects" have been pointed out. This study investigated the heterogeneity effect of Fe intensities on X-ray beam using several binary powder mixtures and lacustrine sediment cores.

Journal Articles

Measurement of void fraction distribution at high pressure in 4$$times$$4 simulated fuel bundle for validation of thermal-hydraulics simulation codes

Nagatake, Taku; Shibata, Mitsuhiko; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

JAEA is developing a neutronics/thermal-hydraulics coupling simulation code for light-water reactors. Thermal-hydraulic simulation codes applied to the platform are expected to evaluate void fraction distributions in fuel assemblies under operational conditions, which is necessary for neutron transport simulation, and need to be validated using void fraction distribution data in a rod bundle under high-temperature and high-pressure conditions. To obtain the data for code validation, we have been measuring the instantaneous void fraction distribution in a 4$$times$$4 simulated fuel assembly by a wire mesh sensor. In this paper, we report the results of the experiments with pressure and flow rate as parameters at a maximum pressure of 2.6 MPa.

Journal Articles

An X-ray and neutron scattering study of aqueous MgCl$$_2$$ solution in the gigapascal pressure range

Yamaguchi, Toshio*; Fukuyama, Nami*; Yoshida, Koji*; Katayama, Yoshinori*; Machida, Shinichi*; Hattori, Takanori

Liquids, 3(3), p.288 - 302, 2023/09

We report the structure of an aqueous 2 mol/kg MgCl$$_2$$ solution at pressures from 0.1 MPa to 4 GPa and temperatures from 300 to 500 K revealed by X-ray and neutron scattering measurements. The scattering data are analyzed by empirical potential structure refinement (EPSR) modeling to derive the pair distribution functions, coordination number distributions, angle distributions, and spatial density functions as a function of pressure and temperature. Mg$$^{2+}$$ forms rigid solvation shells extended to the third shell; the first solvation shell of six-fold octahedral coordination with about six water molecules at 0 GPa transforms into about five water molecules and one Cl$$^-$$ due to the formation of the contact ion pairs in the GPa pressure range. The Cl$$^-$$ solvation shows a substantial pressure dependence; the coordination number of a water oxygen atom around Cl$$^-$$ increases from 8 at 0.1 MPa/300 K to 10 at 4 GPa/500 K. The solvent water transforms the tetrahedral network structure at 0.1 MPa/300 K to a densely packed structure in the GPa pressure range; the number of water oxygen atoms around a central water molecule gradually increases from 4.6 at 0.1 MPa/298 K to 8.4 at 4 GPa/500 K.

Journal Articles

Development of a numerical simulation method for air cooling of fuel debris by JUPITER

Yamashita, Susumu; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 10(4), p.22-00485_1 - 22-00485_25, 2023/08

A detailed evaluation for air cooling of fuel debris in actual reactors will be essential in fuel debris retrieval under dry conditions. To understand the heat transfer in and around fuel debris, which is assumed as a porous medium in the primary containment vessel (PCV) mechanistically, we newly applied the porous medium model to the multiphase and multicomponent computational fluid dynamics code named JUPITER (JAEA Utility Program for Interdisciplinary Thermal-hydraulics Engineering and Research). We applied the Darcy-Brinkman model as for the porous medium model. This model has high compatibility with JUPITER because it can treat both a pure fluid and a porous medium phase simultaneously in the same manner as the one-fluid model in multiphase flow simulation. We addressed the case of natural convection with a high-velocity flow standing out nonlinear effects by implementing the Forchheimer model, including the term of the square of the velocity as a nonlinear effect to the momentum transport equation of JUPITER. We performed some simple verification and validation simulations, such as the natural convection simulation in a square cavity and the natural convective heat transfer experiment with the porous medium, to confirm the validity of the implemented model. We confirmed that the result of JUPITER agreed well with these simulations and experiments. In addition, as an application of the updated JUPITER, we performed the preliminary simulation of air cooling of fuel debris in the condition of the Fukushima Daiichi Nuclear Power Station unit 2 including the actual core materials. As a result, JUPITER calculated the temperature and velocity field stably in and around the fuel debris inside the PCV. Therefore, JUPITER has the potential to estimate the detailed and accurate thermal-hydraulics behaviors of fuel debris.

Journal Articles

Development of numerical simulation method of natural convection around heated porous medium by using JUPITER

Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

For contaminated water management in decommissioning Fukushima Daiichi Nuclear Power Stations, reduction in water injection, intermittent injection water and air cooling are considered. However, since there are uncertainties of fuel debris in the PCV, it is necessary to examine and evaluate optimal cooling methods according to the distribution state of the fuel debris and the progress of the fuel debris retrieval work in advance. We have developed a method for estimating the thermal behavior in the air cooling, including the influence of the position, heat generation and the porosity of fuel debris. Since a large-scale thermal-hydraulics analysis of natural convection is necessary for the method, JUPITER developed independently by JAEA is used. It is however difficult to perform the large-scale thermal-hydraulics analysis with JUPITER by modeling the internal structure of the debris which may consist of a porous medium. Therefore, it is possible to analyze the heat transfer of the porous medium by adding porous models to JUPITER. In this study, we report the validation of JUPITER applied the porous model and discuss which heat transfer models are most effective in porous models such as series, parallel and geometric mean models. To obtain validation data of JUPITER for the natural convective heat transfer analysis around the porous medium, we performed the heat transfer and the flow visualization experiments of the natural convection in the experimental system including the porous medium. In the comparison between the experiment and the numerical analysis with each model, the numerical result with the geometric mean model was the closest of the models to the experimental results. However, the numerical results of the temperature and the velocity were overestimated for those experimental results. In particular, the temperature near the interface between the porous medium and air was more overestimated.

Journal Articles

Development of nondestructive elemental analysis system for Hayabusa2 samples using muonic X-rays

Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.

ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04

 Times Cited Count:4 Percentile:93.95(Chemistry, Multidisciplinary)

The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.

Journal Articles

Development of particle collection technique by using bubble breakup phenomenon in venturi tube

Uesawa, Shinichiro; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Konsoryu, 37(1), p.55 - 64, 2023/03

In decommissioning Fukushima Daiichi Nuclear Power Station, the issue is confinement of radioactive aerosols in the primary containment vessel. Although a High Efficiency Particulate Air (HEPA) filter is used to collect the aerosol particles, pretreatment equipment such as a scrubber may be applied to reduce the load of HEPA filters. In the scrubber, the aerosol particles are removed by moving from gas to liquid through gas-liquid interface. Since the collection efficiency (CE) depends on gas-liquid interfacial area, fine bubbles are necessary to obtain high collection efficiency. JAEA developed a new particle removal technique by using bubble breakup phenomenon in a Venturi tube. To confirm usefulness of the technique, we performed the CE measurements and observed gas-liquid two-phase flow in the Venturi tube. In comparison with a straight pipe type, the Venturi type can have removed particles more 1,000 than it. The CE is almost the same as a HEPA filter. In addition, the Venturi type has the enough CE as the pretreatment equipment for various materials of particles such as Kanto loam, SUS and oil. Besides, we clarified that the CE of the Venturi type depended on the gas and liquid flow rates. The CE increases with the increase of the liquid flow rate but decreases with the increase of the gas flow rate. This is because the CE is affected by the bubble breakup phenomenon in the Venturi tube. In the experiment, we confirmed that cavitation number which is the parameter of the bubble breakup was related to the CE of the Venturi type.

Journal Articles

Neutron scattering on an aqueous sodium chloride solution in the gigapascal pressure range

Yamaguchi, Toshio*; Yoshida, Koji*; Machida, Shinichi*; Hattori, Takanori

Journal of Molecular Liquids, 365, p.120181_1 - 120181_10, 2022/11

 Times Cited Count:1 Percentile:16.81(Chemistry, Physical)

Neutron scattering measurements were performed on an aqueous 3 mol/kg NaCl solution in D$$_2$$O at temperature and pressure conditions of 0.1 MPa/298K, 1 GPa/298K, 1 GPa/523K, and 4 GPa/523K. The empirical potential structure refinement method was applied to the obtained data to extract the pair correlation function, coordination number distribution, angular distribution (orientation correlation), and spatial density function (3-D structure). From those results, pressure and temperature dependence of solvation and association of ions and solvent-water structure were discussed.

Journal Articles

A Numerical simulation method to evaluate heat transfer of fuel debris in air cooling by JUPITER, 1; Project overview and the applicability to the actual reactor system

Yamashita, Susumu; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 8 Pages, 2022/10

no abstracts in English

Journal Articles

A Numerical simulation method to evaluate heat transfer of fuel debris in air cooling by JUPITER, 2; Validation of porous model for natural convective heat transfer

Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 8 Pages, 2022/10

Journal Articles

Development of particle removal technique by using bubble breakup phenomenon in converging-diverging nozzle

Uesawa, Shinichiro; Yoshida, Hiroyuki

Konsoryu Shimpojiumu 2022 Koen Rombunshu (Internet), 2 Pages, 2022/08

no abstracts in English

Journal Articles

Experimental plan for displacement damage cross sections using 120-GeV protons at Fermi National Accelerator Laboratory

Iwamoto, Yosuke; Yoshida, Makoto*; Meigo, Shinichiro; Yonehara, Katsuya*; Ishida, Taku*; Nakano, Keita; Abe, Shinichiro; Iwamoto, Hiroki; Spina, T.*; Ammigan, K.*; et al.

JAEA-Conf 2021-001, p.138 - 143, 2022/03

To predict the operating lifetime of materials in high-energy radiation environments at proton accelerator facilities, Monte Carlo code are used to calculate the number of displacements per atom (dpa). However, there is no experimental data in the energy region above 30 GeV. In this presentation, we introduce our experimental plan for displacement cross sections with 120-GeV protons at Fermilab Test Beam Facility. Experiments will be performed for the US fiscal year 2022. We developed the sample assembly with four wire sample of Al, Cu, Nb and W with 250-$$mu$$m diameter and 4-cm length. The sample assembly will be maintained at around 4 K by using a cryocooler in a vacuum chamber. Then, changes in the electrical resistivity of samples will be obtained under 120-GeV proton irradiation. Recovery of the accumulated defects through isochronal annealing, which is related to the defect concentration in the sample, will also be measured after the cryogenic irradiation.

Journal Articles

Structure of an aqueous RbCl solution in the gigapascal pressure range by neutron diffraction combined with empirical potential structure refinement modeling

Zhang, W. Q.*; Yamaguchi, Toshio*; Fang, C. H.*; Yoshida, Koji*; Zhou, Y. Q.*; Zhu, F. Y.*; Machida, Shinichi*; Hattori, Takanori; Li, W.*

Journal of Molecular Liquids, 348, p.118080_1 - 118080_11, 2022/02

 Times Cited Count:2 Percentile:34.79(Chemistry, Physical)

The ion hydration and association and hydrogen-bonded water structure in an aqueous 3 mol/kg RbCl solution were investigated at 298 K/0.1 MPa, 298 K/1 GPa, 523 K/1 GPa, and 523 K/4 GPa by neutron diffraction combined with EPSR methods. The second hydration layer of Rb$$^+$$ and Cl$$^-$$ becomes evident under elevated pressure and temperature conditions. The average oxygen coordination number of Rb$$^+$$ (Cl$$^-$$) in the first hydration layer increases from 6.3 (5.9) ambient pressure to 8.9 (9.1) at 4 GPa, while decreasing coordination distance from 0.290 nm (0.322 nm) to 0.288 nm (0.314 nm). The orientation of the water dipole in the first solvation shell of Rb$$^+$$ and a central water molecule is sensitive to pressure, but that in the first solvation shell of Cl$$^-$$ does not change very much. The number of contact-ion pairs Rb$$^+$$-Cl$$^-$$ decreases with elevated temperature and increases with elevated pressure. Water molecules are closely packed, and the tetrahedral hydrogen-bonded network of water molecules no longer exists in extreme conditions.

Journal Articles

PSTEP: Project for solar-terrestrial environment prediction

Kusano, Kanya*; Ichimoto, Kiyoshi*; Ishii, Mamoru*; Miyoshi, Yoshizumi*; Yoden, Shigeo*; Akiyoshi, Hideharu*; Asai, Ayumi*; Ebihara, Yusuke*; Fujiwara, Hitoshi*; Goto, Tadanori*; et al.

Earth, Planets and Space (Internet), 73(1), p.159_1 - 159_29, 2021/12

 Times Cited Count:6 Percentile:51.19(Geosciences, Multidisciplinary)

The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.

Journal Articles

Hybridization of Bogoliubov quasiparticles between adjacent CuO$$_2$$ layers in the triple-layer cuprate Bi$$_2$$Sr$$_2$$Ca$$_2$$Cu$$_3$$O$$_{10+delta}$$ studied by angle-resolved photoemission spectroscopy

Ideta, Shinichiro*; Johnston, S.*; Yoshida, Teppei*; Tanaka, Kiyohisa*; Mori, Michiyasu; Anzai, Hiroaki*; Ino, Akihiro*; Arita, Masashi*; Namatame, Hirofumi*; Taniguchi, Masaki*; et al.

Physical Review Letters, 127(21), p.217004_1 - 217004_6, 2021/11

 Times Cited Count:6 Percentile:49.47(Physics, Multidisciplinary)

Journal Articles

Summary results of subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))"

Koyama, Shinichi; Nakagiri, Toshio; Osaka, Masahiko; Yoshida, Hiroyuki; Kurata, Masaki; Ikeuchi, Hirotomo; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Takano, Masahide; et al.

Hairo, Osensui Taisaku jigyo jimukyoku Homu Peji (Internet), 144 Pages, 2021/08

JAEA performed the subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))" in 2020JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning and Contaminated Water Management.

Journal Articles

Measurement of displacement cross section for proton in the kinetic energy range from 0.4 GeV to 3 GeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

JPS Conference Proceedings (Internet), 33, p.011050_1 - 011050_6, 2021/03

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and aluminum and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Journal Articles

Measurements of displacement cross section of tungsten under 389-MeV proton irradiation and thermal damage recovery

Iwamoto, Yosuke; Yoshida, Makoto*; Matsuda, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Yashima, Hiroshi*; Yabuuchi, Atsushi*; Shima, Tatsushi*

Materials Science Forum, 1024, p.95 - 101, 2021/03

To predict the lifetime of target materials in high-energy radiation environments at spallation neutron sources, radiation transport codes such as PHITS are used to calculate the displacements per atom (DPA) value. In this work, to validate calculated DPA values of tungsten, we implemented 0.25-mm-diameter wire sample of tungsten in a proton irradiation device with a Gifford-McMahon cryocooler and measured the defect-induced electrical resistivity changes related to the displacement cross section using 389-MeV protons at 10 K. As well as our previous results for aluminum and copper, calculated results with defect production efficiencies provided good agreements with experimental data. Based on measurements of recovery of the defects through annealing, about 85% of the damage remained at 60 K, and the same tendency is observed in other experimental result for reactor neutron irradiation.

Journal Articles

Measurement of displacement cross-sections of copper and iron for proton with kinetic energies in the range 0.4 - 3 GeV

Matsuda, Hiroki; Meigo, Shinichiro; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

Journal of Nuclear Science and Technology, 57(10), p.1141 - 1151, 2020/10

 Times Cited Count:9 Percentile:75.92(Nuclear Science & Technology)

To estimate the structural damages of materials in accelerator facilities, displacement per atom (dpa) is widely employed as a damage index, calculated based on the displacement cross-section obtained using a calculation model. Although dpa is applied as standard, the experimental data of the displacement cross-section for a proton in the energy region above 20 MeV are scarce. Among the calculation models, difference of about factor 8 exist, so that the experimental data of the cross-section are crucial to validate the model. To obtain the displacement cross-section, we conducted experiments at J-PARC. The displacement cross-section of copper and iron was successfully obtained for a proton projectile with the kinetic energies, 0.4 - 3 GeV. The results were compared with those obtained using the widely utilized Norgertt-Robinson-Torrens (NRT) model and the athermal-recombination-corrected (arc) model based on molecular dynamics. It was found that the NRT model overestimates the present displacement cross-section by 3.5 times. The calculation results obtained using with the arc model based on the Nordlund parameter show remarkable agreement with the experimental data. It can be concluded that the arc model must be employed for the dpa calculation for the damage estimation of copper and iron.

291 (Records 1-20 displayed on this page)