Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 80

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Present status of the JAEA-AMS-TONO (2022FY)

Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; Shimada, Akiomi; et al.

Dai-35-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.17 - 19, 2024/03

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.

Journal Articles

Status report of JAEA-AMS-TONO; Research and technical development in the last four years

Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.

Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 ($$^{14}$$C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for $$^{14}$$C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.

Journal Articles

$$^{10}$$Be analysis of the rock samples from the northeastern shore of Lake Pumoyum Co in south Tibetan Plateau

Nara, Fumiko*; Watanabe, Takahiro; Kokubu, Yoko; Zhu, L.*

Nuclear Instruments and Methods in Physics Research B, 539, p.28 - 32, 2023/06

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Lake Pumoyum Co is located on the south Tibetan Plateau. The lake terraces are developed on the eastern lake shore, and it supposed that the large lake level changes would have happened in Pumoyum Co. The in-situ terrestrial cosmogenic adionuclides can be used to estimate the earth surface processes, such as the erosion rate and exposure age dating of rocks. Here we report the results of $$^{10}$$Be values of the rock samples from the lake terraces around Pumoyum Co. The concentrations of $$^{10}$$Be were measured by the JAEA-AMS-TONO-5MV in the Tono Geoscience Center, Japan Atomic Energy Agency. The $$^{10}$$Be concentrations ranged from 3.78 to 10.8$$times$$10$$^{6}$$ (atoms/g), but the $$^{10}$$Be values showed the decreasing trend following to the distance from the lake shore. This result indicates that $$^{10}$$Be values of the rocks at the shore of Pumoyum Co could be influenced from the erosion rate or tectonic process rather than the exposure date resulting from the lake level changes.

Journal Articles

Present status of the JAEA-AMS-TONO (2021)

Matsubara, Akihiro*; Fujita, Natsuko; Miyake, Masayasu; Ishii, Masahiro*; Watanabe, Takahiro; Kokubu, Yoko; Nishio, Tomohiro*; Ogawa, Yumi; Jinno, Satoshi; Kimura, Kenji; et al.

JAEA-Conf 2022-002, p.55 - 62, 2023/03

We report the present status of the JAEA-AMS-TONO. Particularly, the destructions of varistors used in the beamline equipment will be presented. The cause of the destruction as well as implementation of the safety measures are mentioned.

Journal Articles

Present status of the JAEA-AMS-TONO (2022FY)

Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Yamamoto, Yusuke; Kimura, Kenji; et al.

Dai-23-Kai AMS Shimpojiumu Hokokushu, p.1 - 4, 2022/12

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.

Journal Articles

Development of an ion funnel reaction cell for suppression of isobaric interference in chrorin-36 dating

Jinno, Satoshi; Fujita, Natsuko; Tanuma, Hajime*

Dai-23-Kai AMS Shimpojiumu Hokokushu, p.89 - 92, 2022/12

The measurement of chlorine-36 ($$^{36}$$Cl) in AMS, which is important for the dating of saline groundwater, is more difficult than other nuclides due to the isobaric interference by sulfur-36 ($$^{36}$$S). In general, acceleration voltages of 6 MV or higher are required to separate $$^{36}$$Cl and $$^{36}$$S. Therefore, this study aims to develop an ion funnel reaction cell and incorporate it into the low energy side of JAEA-AMS-TONO-5MV to selectively suppress $$^{36}$$S.

JAEA Reports

Assessment report of research and development activities in FY2021; Activity of "Research and Development on Geological Disposal of High-level Radioactive Waste" (Post- and pre-review report)

Geological Disposal Research and Development Department

JAEA-Evaluation 2022-007, 81 Pages, 2022/11

JAEA-Evaluation-2022-007.pdf:2.06MB
JAEA-Evaluation-2022-007-appendix(CD-ROM).zip:37.06MB

Japan Atomic Energy Agency (JAEA) consulted the advisory committee, "Evaluation Committee on Research and Development (R&D) Activities for Geological Disposal of High-Level Radioactive Waste", for post- and pre-review assessment of R&D activities on high-level radioactive waste disposal in accordance with "General Guideline for the Evaluation of Government Research and Development (R&D) Activities" by the Cabinet Office, Government of Japan, "Guideline for Evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology" and JAEA's "Regulation on Conduct for Evaluation of R&D Activities". In response to JAEA's request, the Committee reviewed mainly the progress of the R&D project on geological disposal, the relevance of the project outcome and the efficiency of the project implementation during the period of the current and next plan. This report summarizes the results of the assessment by the Committee with the Committee report attached.

Journal Articles

A Safer preprocessing system for analyzing dissolved organic radiocarbon in seawater

Otosaka, Shigeyoshi*; Jeon, H.*; Hou, Y.*; Watanabe, Takahiro; Aze, Takahiro*; Miyairi, Yosuke*; Yokoyama, Yusuke*; Ogawa, Hiroshi*

Nuclear Instruments and Methods in Physics Research B, 527, p.1 - 6, 2022/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The measurement the radiocarbon of dissolved organic matter (DO$$^{14}$$C) in seawater can provide information about a timescale of the dynamics of dissolved organic matter as well as about its sources in the ocean. Due to the low DOC concentration in seawater, in spite of the development of accelerator mass spectrometry, a relatively large volume of seawater ($$sim$$1 L) is required for that analysis. In addition, complicated processing such as UV irradiation that emits high heat is required. In this study, we have developed a safer and easier method to analyze DO$$^{14}$$C in seawater than the conventional method. A particularly significant change was the adoption of a low-pressure mercury lamp in the decomposition system, which enabled direct decomposition of organic matter at lower temperatures. We also propose a method to quantitatively evaluate the accuracy of this system by analyzing simulated seawater consists of a soluble reference material of organic matter and sodium chloride. This method is expected to be applied not only to carbon isotope ratio analysis but also to analysis of trace elements and isotopes of various dissolved organic substances.

Journal Articles

Present status of the JAEA-AMS-TONO (2019-2020)

Fujita, Natsuko; Matsubara, Akihiro; Miyake, Masayasu*; Watanabe, Takahiro; Kokubu, Yoko; Nishio, Tomohiro*; Ogawa, Yumi*; Kato, Motohisa*; Shimada, Akiomi; Ogata, Nobuhisa

Dai-33-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, P. 48, 2022/04

no abstracts in English

JAEA Reports

Data comparison of measurement of carbon isotope standards between JAEA-AMS-TONO and JAEA-AMS-MUTSU

Kokubu, Yoko; Matsubara, Akihiro; Fujita, Natsuko; Kuwabara, Jun; Kinoshita, Naoki

JAEA-Technology 2021-028, 33 Pages, 2022/02

JAEA-Technology-2021-028.pdf:2.18MB

Japan Atomic Energy Agency (JAEA) has two facilities of accelerator mass spectrometry, JAEA-AMS-TONO and JAEA-AMS-MUTSU at Tono Geoscience Center and Aomori Research and Development Center, respectively. In this report, characteristics of each facility and results of standard samples in the inner-comparison test of carbon isotope measurement will be described. Both facilities have been used for research by not only JAEA's staff but also researchers who belong to universities and other institutes on the shared use program of JAEA facilities. Recently, researchers trend to use both facilities with the expansion of demand for the carbon isotope measurement by using the accelerator mass spectrometer (AMS). However, each facility has a spectrometer made by a different manufacturer and equipped with different mechanical components. There is a difference in each ability to the carbon isotope measurement such as background level. This is, for example, due to different ion injection system adapted at each spectrometer. Further, each facility uses a different analytical method adjusted to each main research field. When a researcher uses both facilities, the researcher understands more about the characteristics and need to make a suitable choice of a facility for samples and the analytical method. The report presents a detailed information of characteristics of the spectrometer, sample preparation method and analytical method, and of ability of the measurement based on the inner-comparison test.

Journal Articles

$$^{129}$$I/$$^{127}$$I and $$Delta$$$$^{14}$$C records in a modern coral from Rowley Shoals off northwestern Australia reflect the 20th-century human nuclear activities and ocean/atmosphere circulations

Mitsuguchi, Takehiro; Okabe, Nobuaki*; Yokoyama, Yusuke*; Yoneda, Minoru*; Shibata, Yasuyuki*; Fujita, Natsuko; Watanabe, Takahiro; Kokubu, Yoko

Journal of Environmental Radioactivity, 235-236, p.106593_1 - 106593_10, 2021/09

 Times Cited Count:5 Percentile:35.21(Environmental Sciences)

For a contribution to developing the usage of iodine-129 ($$^{129}$$I) as a tracer of deep-seated fluid, $$^{129}$$I/$$^{127}$$I and $$Delta$$$$^{14}$$C were measured for annual bands (AD 1931-1991) of a modern coral collected from Northwestern Australia; the measurements were performed using the JAEA-AMS-TONO-5MV for $$^{129}$$I/$$^{127}$$I and an AMS facility of the University of Tokyo for $$Delta$$$$^{14}$$C. Results indicate that both $$^{129}$$I/$$^{127}$$I and $$Delta$$$$^{14}$$C distinctly increase from 1950s. The $$Delta$$$$^{14}$$C increase can be ascribed to atmospheric nuclear tests, while the $$^{129}$$I/$$^{127}$$I increase is due to nuclear-fuel reprocessing as well as atmospheric nuclear tests. These results are in good agreement with previous studies, indicating that the $$^{129}$$I/$$^{127}$$I measurement by JAEA-AMS-TONO-5MV has been further developed.

Journal Articles

Formation process of swamp sediments of the Karako Lowland in northern Shimabara Peninsula, Western Japan

Nakanishi, Toshimichi*; Okuno, Mitsuru*; Yamasaki, Keiji*; Hong, W.*; Fujita, Natsuko; Nakamura, Toshio*; Horikawa, Yoshiyuki*; Sato, Eiichi*; Kimura, Haruo*; Tsutsumi, Hiroyuki*

Nagoya Daigaku Nendai Sokutei Kenkyu, 5, p.38 - 43, 2021/03

no abstracts in English

Journal Articles

Dating of buried wood logs and fragments for high resolution reconstruction of landslide histories; Case studies in the Japanese Alps region in the historical times

Yamada, Ryuji*; Kimura, Takashi*; Kariya, Yoshihiko*; Sano, Masaki*; Tsushima, Akane*; Li, Z.*; Nakatsuka, Takeshi*; Kokubu, Yoko; Inoue, Kimio*

Sabo Gakkai-Shi, 73(5), p.3 - 14, 2021/01

We discuss the applicability of dating methods for determining landslide chronologies in relation to the type of samples and the sampling location. Case studies are carried out with fossil wood samples buried in the colluvial soil of large-scale landslides occurred in two areas of the Japanese Alps region. Ages are determined by accelerator mass spectrometry radiocarbon dating and dendrochronological analysis using the oxygen isotope composition of tree ring cellulose. Most of ages for Dondokosawa rock avalanche are concordant with the period of AD 887 Ninna (Goki-Shichido) earthquake. Ages for Ohtsukigawa debris avalanche are not concentrated in a specific period. In order to obtain accurate age of large-scale landslide, utilizing buried large diameter tree trunk or branches with the good preservation condition has a lot of advantages because it allows us to compare the landslide chronology with historical records of heavy rainfall and large earthquakes.

Journal Articles

Preliminary report on small-mass graphitization for radiocarbon dating using EA-AGE3 at JAEA-AMS-TONO

Watanabe, Takahiro; Fujita, Natsuko; Matsubara, Akihiro; Miyake, Masayasu*; Nishio, Tomohiro*; Ishizaka, Chika; Kokubu, Yoko

Geochemical Journal, 55(4), p.277 - 281, 2021/00

 Times Cited Count:2 Percentile:21.91(Geochemistry & Geophysics)

Small-mass radiocarbon dating less than 0.1 mg carbon has been developed by Accelerator mass spectrometry (AMS) and manual preparation techniques using the vacuum glass lines. Because geological samples are limited for the dating in many cases, preparation techniques should be improved for small samples and high efficiency analysis. For radiocarbon dating of geological and other organic samples, small-mass graphitization of international standard reference materials (ca. 0.1 and 0.05 mg carbon) was evaluated using the elemental analyzer and automated graphitization equipment 3 (EA-AGE3; IonPlus AG) in our study. Additionally, this paper presents the first data for the small samples by the EA-AGE3. The average radiocarbon concentration of the small-mass international standards (NIST-SRM4990C, IAEA-C5, and C7) prepared by the EA-AGE3 were agreement with the consensus values within $$pm$$ 2$$sigma$$. Therefore, small-mass graphitization using the EA-AGE3 can be adapted for AMS radiocarbon measurements in our case (down to ca. 0.05 mg carbon).

JAEA Reports

Practical guide on soil sampling, treatment, and carbon isotope analysis for carbon cycle studies

Koarashi, Jun; Atarashi-Andoh, Mariko; Nagano, Hirohiko*; Sugiharto, U.*; Saengkorakot, C.*; Suzuki, Takashi; Kokubu, Yoko; Fujita, Natsuko; Kinoshita, Naoki; Nagai, Haruyasu; et al.

JAEA-Technology 2020-012, 53 Pages, 2020/10

JAEA-Technology-2020-012.pdf:3.71MB

There is growing concern that recent rapid changes in climate and environment could have a significant influence on carbon cycling in terrestrial ecosystems (especially forest ecosystems) and could consequently lead to a positive feedback for global warming. The magnitude and timing of this feedback remain highly uncertain largely due to a lack of quantitative understanding of the dynamics of organic carbon stored in soils and its responses to changes in climate and environment. The tracing of radiocarbon (natural and bomb-derived $$^{14}$$C) and stable carbon ($$^{13}$$C) isotopes through terrestrial ecosystems can be a powerful tool for studying soil organic carbon (SOC) dynamics. The primary aim of this guide is to promote the use of isotope-based approaches to improve our understanding of the carbon cycling in soils, particularly in the Asian region. The guide covers practical methods of soil sampling; treatment and fractionation of soil samples; preparation of soil samples for $$^{13}$$C (and stable nitrogen isotope, $$^{15}$$N) and $$^{14}$$C analyses; and $$^{13}$$C, $$^{15}$$N, and $$^{14}$$C measurements by the use of isotope ratio mass spectrometry and accelerator mass spectrometry (AMS). The guide briefly introduces ways to report $$^{14}$$C data, which are frequently used for soil carbon cycling studies. The guide also reports results of a case study conducted in a Japanese forest ecosystem, as a practical application of the use of isotope-based approaches. This guide is mainly intended for researchers who are interested but are not experienced in this research field. The guide will hopefully encourage readers to participate in soil carbon cycling studies, including field works, laboratory experiments, isotope analyses, and discussions with great interest.

Journal Articles

Formation and mobility of soil organic carbon in a buried humic horizon of a volcanic ash soil

Wijesinghe, J. N.*; Koarashi, Jun; Atarashi-Andoh, Mariko; Kokubu, Yoko; Yamaguchi, Noriko*; Sase, Takashi*; Hosono, Mamoru*; Inoue, Yuzuru*; Mori, Yuki*; Hiradate, Shuntaro*

Geoderma, 374, p.114417_1 - 114417_10, 2020/09

 Times Cited Count:10 Percentile:51.79(Soil Science)

Journal Articles

Synchronized gravitational slope deformation and active faulting; A Case study on and around the Neodani fault, central Japan

Komura, Keitaro*; Kaneda, Heitaro*; Tanaka, Tomoki*; Kojima, Satoru*; Inoue, Tsutomu*; Nishio, Tomohiro

Geomorphology, 365, p.107214_1 - 107214_22, 2020/09

 Times Cited Count:1 Percentile:9.84(Geography, Physical)

On the basis of pit excavations and sediment cores at an off-fault deep-seated gravitational slope deformation (DGSD) site and a trench excavation across the active Neodani fault at a nearby site, we examined the records of DGSD and surface-rupturing paleoearthquakes of the Neodani fault. We found the four most recent DGSD events and the four most recent surface-rupturing earthquakes, respectively and conclude that the ages of events are overlapped each other. We infer that static crustal strain from repeated seismogenic faulting plays an important role in the occurrence of DGSD events, at least in the immediate vicinity of active faults, although coseismic severe shaking would have at least some effect on them. Our case study suggests that off-fault DGSDs can be used to reconstruct or refine the paleoseismic history of a nearby active fault.

Journal Articles

Application of ion channeling for downsizing Accelerator Mass Spectrometry (AMS) systems

Matsubara, Akihiro*; Fujita, Natsuko; Ishii, Kunikazu*; Kimura, Kenji*

Hoshasen (Internet), 45(3), p.134 - 138, 2020/04

no abstracts in English

Journal Articles

Dating of geological samples

Kokubu, Yoko

ISEE Newsletter, 9, P. 4, 2020/01

no abstracts in English

Journal Articles

Radiocarbon dating of a shrine pavilion and offerings at Abushina shrine in Gifu prefecture, Japan

Kokubu, Yoko; Nishio, Tomohiro; Fujita, Natsuko; Matsubara, Akihiro

Proceedings of the 8th East Asia Accelerator Mass Spectrometry Symposium and the 22nd Japan Accelerator Mass Spectrometry symposium (EA-AMS 8 & JAMS-22), p.91 - 93, 2020/00

no abstracts in English

80 (Records 1-20 displayed on this page)