Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 9559

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Consistent description of light composite particle emission in deuteron-induced reactions

Nakayama, Shinsuke; Iwamoto, Osamu; Watanabe, Yukinobu*

Physical Review C, 100(4), p.044603_1 - 044603_8, 2019/10

The weakly-bound nature of the deuteron brings the complexity of deuteron-induced reactions compared to nucleon-induced ones, and is expected to affect various physical quantities observed in deuteron-induced reactions. Aiming to deep understanding and accurate prediction for the emission of light composite particle (LCP) in deuteron-induced reactions, we revise the computational system dedicated to deuteron-induced reactions, called DEURACS. The model by Iwamoto and Harada describing pre-equilibrium cluster emission which was successfully applied to LCP emission innucleon-induced reactions is integrated into the framework of DEURACS, in which the breakup processes of incident deuteron are explicitly taken into account. The phenomenological model by Kalbach is also adopted to estimate the contribution from the direct pickup process. Using the revised DEURACS, we analyze the $$(d,xt)$$, $$(d,xmathrm{^{3}He})$$, and $$(d,xalpha)$$ reactions in the target mass range $$27 leqslant A leqslant 90$$. Regardless of the targets, the calculation results successfully reproduced the experimental data for each reaction, simultaneously. These results demonstrates that the LCP emission from the pre-equilibrium and compound nucleus processes in deuteron-induced reactions,which occupies a large part of the total LCP emission,can be described by the same theoretical models as used in nucleon-induced reactions when the breakup processes of incident deuteron are properly considered.

Journal Articles

Carbon dioxide balance in early-successional forests after forest fires in interior Alaska

Ueyama, Masahito*; Iwata, Hiroki*; Nagano, Hirohiko; Tahara, Narumi*; Iwama, Chie*; Harazono, Yoshinobu*

Agricultural and Forest Meteorology, 275, p.196 - 207, 2019/09

Fire is the major disturbance in North American boreal forests, and is thought to be the most important process that determines the carbon balance in North American boreal forests. This study conducted four years of tower flux measurements in a burned ecosystem from one to four years after a fire, and nine years of measurements in a young regeneration from five to 13 years after a fire in interior Alaska. The fire scar acted as a source of 248 g C m$$^{-2}$$ yr$$^{-1}$$ one year after the fire, and the annual CO$$_{2}$$ emissions continuously decreased until seven years after the fire. At the final year of the study period, 13 years after the fire, the older forest became a CO$$_{2}$$ sink. During the 13 years after the fires, the total post-fire emissions were 767 g C m$$^{-2}$$ across both sites. Gross primary productivity (GPP) and ecosystem respiration (RE) recovered to those of mature black spruce forests 10 years after the fire. The successional recovery of GPP was mostly explained by the recovery of the leaf area index (LAI). Anomalous weather, such as a cold spring, hot summer, and high summer rainfall, increased the CO$$_{2}$$ emissions rather than the uptake. In interior Alaska, the post-fire CO$$_{2}$$ emissions (35-48 Tg C) were estimated to be approximately one third to fourth of the direct CO$$_{2}$$ emissions (156 Tg C) by combustions from 1998 to 2017, which indicates that post-fire emissions are important to the regional CO$$_{2}$$ balance. The forest successional trajectory at young age still contains large uncertainties due to lack of data, and thus adding new data improves our understanding of the post-fire CO$$_{2}$$ balance.

Journal Articles

Screw dislocation-spherical void interactions in fcc metals and their dependence on stacking fault energy

Hayakawa, Sho*; Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*

Journal of Materials Science, 54(17), p.11509 - 11525, 2019/09

Journal Articles

First-principles calculation of mechanical properties of simulated debris Zr$$_x$$U$$_{1-x}$$O$$_2$$

Itakura, Mitsuhiro; Nakamura, Hiroki; Kitagaki, Toru; Hoshino, Takanori; Machida, Masahiko

Journal of Nuclear Science and Technology, 56(9-10), p.915 - 921, 2019/09

To elucidate the mechanical properties of fuel debris inside the Fukushima Daiichi Nuclear Power Plant, we use first-principles calculations to evaluate mechanical properties of cubic Zr$$_{x}$$U$$_{1-x}$$O$$_{2}$$, which is a main component of the fuel debris. We focus on the dependence of mechanical properties on the fraction x of zirconium, compare our results with recent experiment of simulated debris, in which dependences of elastic moduli and fracture toughness on the ZrO$$_{2}$$ content showed deviation from a simple linear relation. We show that elastic moduli drop at around x=0.25 and increase again for larger values of x, as has been observed in experiments. The reason of the drop is a softening owing to disordered atomistic structures induced by the solute zirconium atoms. We also find that stress-strain curves for the x=0.125 case show marked hysteresis owing to the existence of many meta-stable states. We show that this hysteresis leads to slightly increased fracture toughness, but it is not enough to account for the significant increase of fracture toughness observed in experiments.

Journal Articles

Dosimetric dependence of ocular structures on eye size and shape for external radiation fields of electrons, photons, and neutrons

Furuta, Takuya; El Basha, D.*; Iyer, S. S. R.*; Correa Alfonso, C. M.*; Bolch, W. E.*

Journal of Radiological Protection, 39(3), p.825 - 837, 2019/09

Despite large variation of human eye, only one computational eye model has been adopted in almost all the radiation transport simulation studies. We thus adopted a new scalable and deformable eye model and studied the radiation exposure by electrons, photons, and neutrons in the standard radiation fields such as AP, PA, RLAT, ROT, by using Monte Carlo radiation transport code PHITS. We computed the radiation exposure for 5 eye models (standard, large, small, myopic, hyperopic) and analyzed influence of absorbed dose in ocular structures on eye size and shape. Dose distribution of electrons is conformal and therefore the absorbed doses in ocular structures depend on the depth location of each ocular structure. We thus found a significant variation of the absorbed doses for each ocular structure for electron exposure due to change of the depth location affected by eye size and shape. On the other hand only small variation was observed for photons and neutrons exposures because of less conformal dose distribution of those particles.

Journal Articles

Impact of stellar superflares on planetary habitability

Yamashiki, Yosuke*; Maehara, Hiroyuki*; Airapetian, V.*; Notsu, Yuta*; Sato, Tatsuhiko; Notsu, Shota*; Kuroki, Ryusuke*; Murashima, Keiya*; Sato, Hiroaki*; Namekata, Kosuke*; et al.

Astrophysical Journal, 881(2), p.114_1 - 114_24, 2019/08

The impact of Stellar flares on extrasolar planetary systems has been discussed and argued, especially whether there is a potential impact on their life systems. Here, we propose a comprehensive evaluation system for stellar flares, focusing on Stellar Proton Events (SPE) on selected extrasolar planets with hypothetical atmospheres and oceans. This is done by cross-linking KIC flare-observed and flare-estimated stars by their start pots that are directly linked with the Monte Carlo simulation system PHITS through the exoplanetary database system ExoKyoto. The estimated dose at ground level for each planetary surface did not exceed the critical dose for complex animals.

Journal Articles

Dispersion modelling of radioactive materials

Nagai, Haruyasu; Yamazawa, Hiromi*

Environmental Contamination from the Fukushima Nuclear Disaster; Dispersion, Monitoring, Mitigation and Lessons Learned, p.230 - 242, 2019/08

An overview of SPEEDI is provided in the context of it development, functions, and role in the framework of nuclear emergency management. Thereafter, we examine how it was used and how it should be used for the Fukushima Daiichi Nuclear Power Station accident from a system developer perspective. We believe that our review can provide lessons or tasks for improving the prediction system and for considering better utilization of the system; it is also beneficial to consider reconstructing the framework of nuclear emergency management. Furthermore, we hope this review will prove useful in understanding and effectively using the atmospheric dispersion predictions from the system in the case of a similar accident in the future.

Journal Articles

Atomistic simulations for the effects of stacking fault energy on defect formations by displacement cascades in FCC metals under Poisson's deformation

Hayakawa, Sho*; Okita, Taira*; Itakura, Mitsuhiro; Kawabata, Tomoya*; Suzuki, Katsuyuki*

Journal of Materials Science, 54(16), p.11096 - 11110, 2019/08

Journal Articles

Development of regional downscaling capability in STEAMER ocean prediction system based on multi-nested ROMS model

Kamidaira, Yuki; Kawamura, Hideyuki; Kobayashi, Takuya; Uchiyama, Yusuke*

Journal of Nuclear Science and Technology, 56(8), p.752 - 763, 2019/08

Oceanic regional downscaling capability was implemented into Short-Term Emergency Assessment system of Marine Environmental Radioactivity (STEAMER) developed by Japan Atomic Energy Agency to enable us to predict more realistically the oceanic dispersion of radionuclides at higher spatiotemporal resolutions for broader applications. The system consisted of a double-nested oceanic downscaling circulation model with tidal forcing and an oceanic radionuclide dispersion model. This system was used to comparatively examine downscaling and tidal effects on the dispersion of radionuclides hypothetically released from the Fukushima Daiichi Nuclear Power Plant in the colder season. The simulated dissolved $$^{137}$$Cs distribution was different from that obtained using coarser-resolution models because downscaling enhanced both horizontal and vertical mixing. The suppression of horizontal mixing and the promotion of vertical mixing by tidal forcing synergistically reduced offshore $$^{137}$$Cs transport. In addition, the submesoscale effects strengthened the three-dimensional $$^{137}$$Cs fluctuations by $$<$$10 times, while the tidal effects promoted slightly increased the intensity of three-dimensional $$^{137}$$Cs fluctuations by approximately 3%. This indicated that the submesoscale effects substantially surpassed tidal forcing in oceanic mixing in the coastal margin off Fukushima in the colder season.

Journal Articles

Activation measurement for thermal-neutron capture cross-section of Cesium-135

Nakamura, Shoji; Kimura, Atsushi; Iwamoto, Osamu; Shibahara, Yuji*; Uehara, Akihiro*; Fujii, Toshiyuki*

KURNS Progress Report 2018, P. 106, 2019/08

Under the ImPACT project, the neutron capture cross-section measurements of Cesium-135 ($$^{135}$$Cs) among the long-lived fission products have been performed at Kyoto University. This paper reports measurements of the thermal-neutron capture cross-section of $$^{135}$$Cs at the Kyoto University Research Reactor (KUR).

Journal Articles

Radiochemical research for the advancement of $$^{99}$$Mo/$$^{99m}$$Tc generator by (n,$$gamma$$) method

Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

KURNS Progress Report 2018, P. 155, 2019/08

no abstracts in English

Journal Articles

Analyzing the cross slip motion of screw dislocations at finite temperatures in body-centered-cubic metals; Molecular statics and dynamics studies

Suzudo, Tomoaki; Onitsuka, Takashi*; Fukumoto, Kenichi*

Modelling and Simulation in Materials Science and Engineering, 27(6), p.064001_1 - 064001_15, 2019/08

Plasticity of body-centered-cubic (BCC) metals at low temperatures is determined by screw dislocation kinetics. Because the core of screw dislocation in these metals has non-planar structure, its motion is complex and unpredictable. For example, although density functional theory (DFT) predicts slip on a { 110 } plane, the actual slip plane at elevated temperatures departs from the prediction, its mechanism having been a mystery for decades. Here we conduct a series of molecular dynamics simulations to track the screw dislocation motion and successfully reproduced the transition of the slip plane. We then devised an algorithm to scrutinize the activation of dislocation jump over the Peierls barrier and discovered the possible origin of this unexpected phenomenon, i.e., a large fluctuation leads to the kink-pair nucleation for the cross-slip jump without transition of dislocation core structure.

Journal Articles

Burnup calculation with versatile reactor analysis code system MARBLE2 (interactive execution demo)

Yokoyama, Kenji

Nippon Genshiryoku Gakkai Dai-51-Kai Robutsuri Kaki Semina Tekisuto "Nensho Keisan No Kiso To Jissen", p.95 - 135, 2019/08

The burnup calculation function included in the versatile reactor analysis code system system MARBLE2 is introduced by an interactive execution demo. Although the main purpose of MARBLE2 is to analyze nuclear characteristics of fast reactors, the users can use it while assembling small functions according to purpose. Therefore, it can be applied other purposes than the nuclear characteristic analysis of fast reactors. In order to realize such usage, MARBLE is developed by using an object-oriented scripting language Python. As the Python implementation is short and easy to understand, the burnup function of MARBLE is explained by showing several examples of the implementation. In addition, an example of constructing a simple burnup calculation system using MARBLE is introduced.

Journal Articles

A Biologically based mathematical model for spontaneous and ionizing radiation cataractogenesis

Sakashita, Tetsuya*; Sato, Tatsuhiko; Hamada, Nobuyuki*

PLoS ONE (Internet), 14(8), p.e0221579_1 - e0221579_20, 2019/08

Cataracts have long been known, but a biologically based mathematical model is still unavailable for cataratogenesis. We here report for the first time an in silico model for cataractogenesis. First, a simplified cell proliferation model was developed for human lens growth based on stem and progenitor cell proliferation as well as epithelial-fiber cell differentiation. Then, a model for spontaneous cataractogenesis was developed to reproduce the human data on a relationship between age and cataract incidence. Finally, a model for radiation cataractogenesis was developed that can reproduce the human data on a relationship between dose and cataract onset at various ages, which was further applied to estimate cataract incidence following chronic lifetime exposure.

Journal Articles

Downward terrestrial gamma-ray flash observed in a winter thunderstorm

Wada, Yuki*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Matsumoto, Takahiro*; Makishima, Kazuo*; Tsuchiya, Harufumi

Physical Review Letters, 123(6), p.061103_1 - 061103_6, 2019/08

Journal Articles

Neutron-induced damage simulations; Beyond defect production cross-section, displacement per atom and iron-based metrics

Sublet, J.-Ch.*; Bondarenko, I. P.*; Bonny, G.*; Conlin, J. L.*; Gilbert, M. R.*; Greenwood, L. R.*; Griffin, P. J.*; Helgesson, P.*; Iwamoto, Yosuke; Khryachkov, V. A.*; et al.

European Physical Journal Plus (Internet), 134(7), p.350_1 - 350_50, 2019/07

Nuclear reaction with nuclear data is the origin of defects produced by cascade damage in irradiated materials. Therefore, it is important to consider nuclear reaction correctly for calculations of the damage energy of Primary Knock on Atom (PKA) and the number of Displacement Per Atom (DPA). Here, radiation damage metrics considering nuclear reaction enables us to simulate transport of each defect and clustering defects in the irradiated material. This paper reviews the theory of nuclear reaction and damage energy and describes the latest methodologies about uncertainty propagation and quantification in nuclear data and damage calculations based on molecular dynamics.

Journal Articles

TENDL-2017 benchmark test with iron shielding experiment at QST/TIARA

Kwon, Saerom*; Konno, Chikara; Ota, Masayuki*; Ochiai, Kentaro*; Sato, Satoshi*; Kasugai, Atsushi*

Fusion Engineering and Design, 144, p.209 - 214, 2019/07

We performed a TENDL-2017 benchmark test with iron shielding experiments by using 40 and 65 MeV neutrons, in order to verify a nuclear data library above 20 MeV for neutronics analyses of A-FNS. We found out that the calculated neutron spectra with TENDL-2017 unnaturally increased near 30 MeV. We figured out that incorrect secondary neutron spectrum data in $$^{54}$$Fe, $$^{56}$$Fe and $$^{58}$$Fe at 30 MeV caused the increase of the neutron flux. Similar problems occurred in a lot of nuclei of TENDL-2017, TENDL-2015 and FENDL-3.1d from TENDL-2010 and TENDL-2011.

Journal Articles

Simulation study on the design of nondestructive measurement system using fast neutron direct interrogation method to nuclear materials in fuel debris

Maeda, Makoto; Furutaka, Kazuyoshi; Kureta, Masatoshi; Ozu, Akira; Komeda, Masao; Toh, Yosuke

Journal of Nuclear Science and Technology, 56(7), p.617 - 628, 2019/07

Journal Articles

Performance of large volume LaBr$$_{3}$$ scintillation detector equipped with specially-designed shield for neutron resonance capture analysis

Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Harada, Hideo

Nuclear Instruments and Methods in Physics Research A, 932, p.16 - 26, 2019/07

Journal Articles

Unraveling anomalous isotope effect on hydrogen diffusivities in fcc metals from first principles including nuclear quantum effects

Kimizuka, Hajime*; Ogata, Shigenobu*; Shiga, Motoyuki

Physical Review B, 100(2), p.024104_1 - 024104_9, 2019/07

The behavior of H isotopes in crystals is a fundamental and recurrent theme in materials physics. Especially, the information on H diffusion over a wide temperature range provides a critical insight into the quantum mechanical nature of the subject; however, this is not yet fully explored. From state-of-the-art ab initio calculations to treat both electrons and nuclei quantum mechanically, we found that the temperature dependence of H isotope diffusivities in face-centered-cubic (fcc) Pd has an unconventional "reversed S" shape on Arrhenius plots. Such irregular behavior is ascribed to the competition between different nuclear quantum effects with different temperature and mass dependencies, which leads to a peculiar situation, where the heavier tritium ($$^3$$H) diffuses faster than the lighter protium ($$^1$$H) in the limited temperature range of 80 - 400 K. This unveils the mechanism of anomalous crossovers between the normal and reversed isotope effects observed in the experiments at high and low temperatures.

9559 (Records 1-20 displayed on this page)